Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị là hình cong trong hình vẽ dưới. Đặt g(x)=f(f(x)). Tìm số nghiệm của phương trình g'(x)=0.

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị là hình cong trong hình vẽ dưới. Đặt g(x)=f(f(x)). Tìm số nghiệm của phương trình g'(x)=0.

Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị là hình cong trong hình vẽ dưới. Đặt g(x)=f(f(x)). Tìm số nghiệm của phương trình g'(x)=0. (ảnh 1)

A. 8.

B. 4.

C. 6.

D. 2.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Dựa vào đồ thị hàm số y=f(x)  ta thấy hàm số có hai điểm cực trị là x=0  x=a(2;3) .

Do đó: f'(x)=0[x=0x=a(2;3)  .

Ta có: g'(x)=f'(f(x)).f'(x)=0[f'(f(x))=0f'(x)=0[f(x)=0              (1)f(x)=a(2;3)   (2)f'(x)=0             (3) .

Dựa vào đồ thị hàm số ta có:

Phương trình (1) có 3 nghiệm phân biệt   [x1(1;0)x2=1x3(3;4).

Phương trình (2) có 3 nghiệm phân biệt khác 3 nghiệm của phương trình (1).

Phương trình (3) có 2 nghiệm phân biệt [x=0x=a(2;3).

6 nghiệm này hoàn toàn phân biệt.

Vậy phương trình  g'(x)=0có 6 nghiệm phân biệt.

 

Copyright © 2021 HOCTAP247