Cho hình chóp S.ABC có đáy ABC là tam giác vuông với AB = AC = 2

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông với AB = AC = 2. Cạnh bên SA vuông góc với đáy và SA = 3. Gọi M là trung điểm của SC.

Cho hình chóp S.ABC có đáy ABC là tam giác vuông với AB = AC = 2 (ảnh 1)

Tính khoảng cách giữa AM và BC.

A. dAM;BC=32

B. dAM;BC=233

C. dAM;BC=32211

D. dAM;BC=226

* Đáp án

C

* Hướng dẫn giải

Cho hình chóp S.ABC có đáy ABC là tam giác vuông với AB = AC = 2 (ảnh 2)

Gọi N là trung điểm của BC ta có MN//BCBC//AMNAM

dAM;BC=dBC;AMN=dC;AMN.

Lại có SCAMN=MdC;AMNdS;AMN=CMSM=1dC;AMN=dS;AMN

Ta có

AM=12SC=12SA2+AC2=1232+22=132

AN=12SB=12SA2+AB2=1232+22=132

MN=12BC=12AB2+AC2=12.22=2

Gọi p là nửa chu vi tam giác AMN ta có p=132+132+22=13+22.

SΔAMN=ppAMpANpMN=224.

VS.AMNVS.ABC=SMSC.SNSB=14VS.AMN=14VS.ABC,VS.ABC=13SA.12AB.AC=16.3.2.2=2.

VS.AMN=14.2=12.

Vậy dAM;BC=dS;AMN=3VS.AMNSΔAMN=3.12224=32211.

Chọn C.

Copyright © 2021 HOCTAP247