Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = 1, AD = 2. Cạnh bên SA = 1 và SA vuông góc với đáy. Gọi E là trung điểm của AD.

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với (ảnh 1)

Diện tích  của mặt cầu ngoại tiếp hình chóp  là:

A. Smc=5π

B. Smc=11π

C. Smc=3π

D. Smc=2π

* Đáp án

B

* Hướng dẫn giải

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với (ảnh 2)

Gọi H, G, F lần lượt là trung điểm của AB, SC, SE và M=ACBD.

Dễ thấy AFGH là hình bình hành.

Ta có AFSESA=AEGFSEGF//AB//CE,ABSESEAFGH.

Khi đó (AFGH) là mặt phẳng trung trực của SE.

Theo bài ra ta có: ABCE là hình vuông CEADΔCED vuông tại E

Gọi I là trung điểm của CDI là tâm đường tròn ngoại tiếp tam giác CDE.

Qua I kẻ đường thẳng d//SAd là trục đường tròn ngoại tiếp tam giác CDE.

Ta gọi O=GHdO là tâm mặt cầu ngoại tiếp hình chóp S.CDE, bán kính R = OC.

Ta có IC=12CD=22.

ΔOIHΔGMHGMMH=OIIHOI=32.

Áp dụng định lí Pytago trong tam giác OIC ta có ΔOIHΔGMHGMMH=OIIHOI=32.

Vậy diện tích mặt cầu ngoại tiếp hình chóp S.CED là: Smc=4πR2=4π.1122=11π.

Chọn B.

Copyright © 2021 HOCTAP247