Cho hàm số y = f(x) liên tục trên R có bảng biến thiên như sau

Câu hỏi :

Cho hàm số y = f(x) liên tục trên  có bảng biến thiên như sau:

Cho hàm số y = f(x) liên tục trên R có bảng biến thiên như sau (ảnh 1)

Đặt hx=mfx2 (m là tham số). Có bao nhiêu giá trị nguyên của m sao cho hàm số y = h(x) có đúng 5 điểm cực trị?

A. Vô số                      

B. 12                           

C. 0                             

D. 10 

* Đáp án

D

* Hướng dẫn giải

Đặt gx=mfx2hx=gx.

Ta có g'x=f'x2=0f'x2=0x2=ax2=bx=a+2x=b+2.

 Hàm số g(x) có 2 điểm cực trị.

Để hàm số hx=gx có 5 điểm cực trị thì phương trình g(x) = 0 phải có 3 nghiệm phân biệt.

Ta có BBT:

Cho hàm số y = f(x) liên tục trên R có bảng biến thiên như sau (ảnh 2)

Phương trình g(x) = 0 phải có 3 nghiệm phân biệt khi và chỉ khi m6<0<m+55<m<6.

Kết hợp điều kiện mm4;3;2;1;0;1;2;3;4;5.

Vậy có 10 giá trị của m thỏa mãn.

Chọn D.

Copyright © 2021 HOCTAP247