Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân có AB=BC=a . Cạnh bên SA vuông góc với đáy, góc SBA=60 độ . Gọi M là điểm nằm trên AC sao cho AC=2CM . Tính khoảng cách giữa SM...

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân có AB=BC=a . Cạnh bên SA vuông góc với đáy, SBA^=60° . Gọi M là điểm nằm trên AC sao cho AC=2CM . Tính khoảng cách giữa SM AB.

A. 6a77.

B. a77.

C. a721.

D. 3a77.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân có AB=BC=a . Cạnh bên SA vuông góc với đáy, góc SBA=60 độ . Gọi M là điểm nằm trên AC sao cho AC=2CM . Tính khoảng cách giữa SM và AB. (ảnh 1)

Trong (ABC), qua M kẻ đường thẳng song song với AB, qua B kẻ đường thẳng song song với AM. Hai đường thẳng này cắt nhau tại E ta được tứ giác ABEM là hình bình hành.

Vì ME//ABAB//(SME)d(AB;SM)=d(AB;(SME))=d(A;(SME))

Từ A trong mặt phẳng (ABEM)   kẻ AKME , lại có:  (do ).

Trong (SAK)   kẻ AHSK  tại H.

Ta có  (do SA(ABEM)EK(SAK) )

 AH(SKE)  tại H.

Từ đó d(AB;SM)=d(A;(SME))=AH .

Xét tam giác SBA vuông tại A SA=AB.tanSBA=a.tan60°=a3 .

Lại có tam giác ABC vuông cân tại B nên AC=AB2=a2CM=AC2=a22 .

Do đó AM=AC+CM=3a22 .

 ΔABCvuông cân tại B nên ACB=45°CBE=ACB=45°  (hai góc so le trong). 

Từ đó ABE=ABC=CBE=90°+45°=135° , suy ra  (hai góc đổi hình bình hành).

Nên tam giác AME là tam giác tù nên K nằm ngoài đoạn ME.

Ta có:  mà tam giác AMK vuông tại K nên tam giác AMK vuông cân tại K. AK=AM2=3a2

Xét tam giác SAK vuông tại A có đường cao AH, ta có: 1AH2=1SA2+1AK2=13a2+19a2AH=3a77 .

Vậy d(AB;SM)=3a77

Copyright © 2021 HOCTAP247