Phương trình log2 (2x-1)/((x-1)^2)=3x^2-8x+5 có hai nghiệm là a và a/b (với a,b thuộc N* và a/b là phân số tối giản). Giá trị của b là:

Câu hỏi :

Phương trình log32x1(x1)2=3x28x+5  có hai nghiệm là a ab  (với a,b*   ab  là phân số tối giản). Giá trị của b là:

A. 1.

B. 4.

C. 2.

D. 3.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Điều kiện: 12<x1 .

Khi đó:      log32x1(x1)2=3x28x+5log3(2x1)log3(x1)2=3(x1)2(2x1)+1log3(2x1)+(2x1)=3(x1)2+log3(x1)2+log33log3(2x1)+(2x1)=3(x1)2+log3[3(x1)2]   (*)

Xét hàm y=f(t)=log3t+t  với t>0  f'(t)=1tln3+1>0,t>0  .

Do đó hàm số y=f(t)  đồng biến trên (0;+) .

Phương trình (*) là f(2x1)=f(3(x1)2)(2x1)=3(x1)2

2x1=3(x22x+1)3x28x+4=0[x=2x=23(tm).

Vậy phương trình có nghiệm 2 và nên a=2,b=3 .

Copyright © 2021 HOCTAP247