Cho hàm số f(x) liên tục trên f'(x) và có đồ thị F'(x) như hình vẽ bên. Bất phương trình log5 [f(x)+m+2]+f(x)>4-m đúng với mọi x thuộc (-1;4) khi và chỉ khi

Câu hỏi :

Cho hàm số f(x)  liên tục trên R và có đồ thị f'(x)  như hình vẽ bên. Bất phương trình log5[f(x)+m+2]+f(x)>4m  đúng với mọi x(1;4)   khi và chỉ khi

Cho hàm số f(x)  liên tục trên f'(x)  và có đồ thị F'(x)  như hình vẽ bên. Bất phương trình log5 [f(x)+m+2]+f(x)>4-m  đúng với mọi x thuộc (-1;4)  khi và chỉ khi (ảnh 1)

A.m4f(1) .

B. m3f(1) .   

C. m<4f(1) .   

D. m3f(4) .

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có:    log5[f(x)+m+2]+f(x)>4mlog5[f(x)+m+2]+f(x)+m+2>log55+5

Xét hàm số   y=g(t)=log5t+t (t>0)

Ta có g'(t)=1tln5+1>0 , t>0  suy ra hàm số y=g(t)  đồng biến trên (0;+) .

Khi đó (*)f(x)+m+2>5f(x)>3m .

Xét hàm số y=f(x)

Ta có  f'(x)=0[x=1x=1x=4

Ta có bảng biến thiên

Cho hàm số f(x)  liên tục trên f'(x)  và có đồ thị F'(x)  như hình vẽ bên. Bất phương trình log5 [f(x)+m+2]+f(x)>4-m  đúng với mọi x thuộc (-1;4)  khi và chỉ khi (ảnh 2)

Từ đồ thị hàm số, suy ra  11|f'(x)|dx<14|f'(x)|dx11f'(x)dx<14f'(x)dx

f(x)|11<f(x)|41f(1)>f(4).

Bất phương trình (*)   đúng với mọi x(1;4)  khi và chỉ khi .f(4)3mm3f(4)

Copyright © 2021 HOCTAP247