Trong không gian với hệ tọa độ Oxyz, cho ba điểm P, Q, R lần lượt di động trên ba trục tọa độ Ox, Oy, Oz (không trùng với gốc tọa độ O) sao cho 1/OP^2+z/OQ^2+z/OR^2=1/8 . Biết mặt...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho ba điểm P, Q, R lần lượt di động trên ba trục tọa độ Ox, Oy, Oz (không trùng với gốc tọa độ O) sao cho1OP2+1OQ2+1OR2=18 . Biết mặt phẳng (PQR) luôn tiếp xúc với mặt cầu (S)   cố định. Đường thẳng d thay đổi nhưng luôn đi qua M(12;32;0)  và cắt  tại hai điểm A, B phân biệt. Diện tích lớn nhất của tam giác AOB

A. 15 .

B. 5 .

C. 17 .

D. 7  .

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Trong không gian với hệ tọa độ Oxyz, cho ba điểm P, Q, R lần lượt di động trên ba trục tọa độ Ox, Oy, Oz (không trùng với gốc tọa độ O) sao cho 1/OP^2+z/OQ^2+z/OR^2=1/8 . Biết mặt phẳng (PQR)  luôn tiếp xúc với mặt cầu (S)  cố định.  (ảnh 1)

Gọi H là hình chiếu vuông góc của điểm O trên mặt phẳng (PQR) .

Dễ thấy 1OH2=1OP2+1OQ2+1OR2   hay 1OH2=18  hay OH=22 .

Khi đó suy ra mặt phẳng (PQR)  luôn tiếp xúc với mặt cầu (S) tâm O, bán kính R=22 .

Ta có OM=14+34+0=1<R  nên điểm M nằm trong mặt cầu (S).

Gọi I là trung điểm của AB, do tam giác OAB cân tại O nên SΔOAB=12OI.AB .

Đặt OI=x , vì  OIOM nên 0<x1   AB=28x2 .

Ta có SΔOAB=12x.28x2=x8x2=8x2x4  .

Xét hàm số f(x)=8x2x4  với 0<x1 .

f'(x)=16x4x3=4x(4x2)>0 x(0;1]

f(x)f(1)=7.

Suy ra diện tích của tam giác OAB lớn nhất bằng 7  đạt được khi M là trung điểm của AB.

Copyright © 2021 HOCTAP247