Trong không gian Oxyz, cho hai điểm A(0;0;2), B( 1;1;0) và mặt cầu (S): x^2+y^2+(z-1)^2=1/4 . Xét điểm M thay đổi thuộc (S) . Giá trị nhỏ nhất của biểu thức MA^2+2MB^2 bằng:

Câu hỏi :

Trong không gian Oxyz, cho hai điểm  A(0;0;2),B(1;1;0) và mặt cầu (S):x2+y2+(z1)2=14 . Xét điểm M thay đổi thuộc . Giá trị nhỏ nhất của biểu thức MA2+2MB2  bằng:

A.   12

B.  34

C.  214

D.  194

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Trong không gian Oxyz, cho hai điểm  A(0;0;2), B( 1;1;0) và mặt cầu (S): x^2+y^2+(z-1)^2=1/4 . Xét điểm M thay đổi thuộc (S) . Giá trị nhỏ nhất của biểu thức MA^2+2MB^2  bằng: (ảnh 1)

Gọi I(a;b;c)  là điểm thỏa mãn IA+2IB=0

Ta có {a+22a=0b+22b=02c2c=0{a=23b=23c=23I(23;23;23)

Ta có:  MA2+2MB2=(MI+IA)2+2(MI+IB)2

 =MI2+2MI.MA+IA2+2MI2+4MI.IB+IB2

=3MI2+IA2+2IB2+2MI(IA+2IB)0=3MI2+IA2+2IB2const=3MI2+IA2+2IB2+2MI(IA+2IB)0=3MI2+IA2+2IB2const

Do {IA2=(23)2+(23)2+(223)2=83IB2=(123)2+(123)2+(23)2=23IA2+2IB2=4   không đổi, nên (MA2+2MB2)minMImin

 với I(23;23;23), M(S) .

Ta có  (23)2+(23)2+(231)2=1>14Inằm ngoài  (S)

Khi đó MImin=IJR  với  J(0;0;1)là tâm mặt cầu, R=12  là bán kính mặt cầu.

Ta có: IJ=(23)2+(23)2+(123)2=1MImin=112=12

Vậy (MA2+2MB2)min=3MImin2+4=3.(12)2+4=194 .

Copyright © 2021 HOCTAP247