Cho hàm số f(x)= ã^3+bx^2+cx+d có đồ thị như hình vẽ. Gọi S là tập hợp các giá trị của m ( m thuộc R) sao cho (x-1)[m^3f(2x-1)-mf(x)+f(x+1)]>=0, với mọi x thuộc R . Số phần tử của...

Câu hỏi :

Cho hàm số f(x)=ax3+bx2+cx+d  có đồ thị như hình vẽ. Gọi S là tập hợp các giá trị của m (m ) sao cho (x1)[m3f(2x1)mf(x)+f(x)1]0, x  . Số phần tử của tập S

Cho hàm số  f(x)= ã^3+bx^2+cx+d có đồ thị như hình vẽ. Gọi S là tập hợp các giá trị của m ( m thuộc R) sao cho (x-1)[m^3f(2x-1)-mf(x)+f(x+1)]>=0, với mọi x thuộc R . Số phần tử của tập S là (ảnh 1)

A. 2

B. 0

C. 3

C. 3

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Từ giả thiết suy ra: g(1)=0m3m=0[m=0m=1m=1 .

Với m=0   ta có: (x1)[f(x)1]0 x  (đúng)

Với  m=1 ta có: 12[(2x1)1][f(2x1)1]0 x   (đúng)

Với m=1  .

Xét x>1  ta có: limx+f(2x1)+12f(x)=4

α>1, α đủ lớn sao cho f(2α1)+12f(α)

(α1)f[(2α1)1+2f(α)]<0 (mâu thuẫn (*)) m=1  (loại).

Vậy m{0;1} .

 

Copyright © 2021 HOCTAP247