Cho số thực a thay đổi và số phức z thỏa mãn z/(căn a^2+1)=(i-a)/(1-a(a-2i)) . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z. Khoảng cách giữa hai điểm M và I(-3;4) (khi...

Câu hỏi :

Cho số thực a thay đổi và số phức z thỏa mãn za2+1=ia1a(a2i) . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z. Khoảng cách giữa hai điểm M và I(3;4)   (khi a thay đổi) là:

A. 4.

B. 3.

C. 5.

D. 6.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Cho số thực a thay đổi và số phức z thỏa mãn z/(căn a^2+1)=(i-a)/(1-a(a-2i)) . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z. Khoảng cách giữa hai điểm M và I(-3;4)   (khi a thay đổi) là: (ảnh 1)

Ta có:      za2+1=ia1a(a2i)z=ia1a2+2aia2+1z=ia(ai)2a2+1z=a2+1ai=a2+1(a+i)a2i2z=a2+1(a+i)a2+iz=a+ia2+1=aa2+1+1a2+1i

M là điểm biểu diễn số phức zM(aa2+1,1a2+1) .

Ta có: (aa2+1)2+(1a2+1)2=a2+1a2+1=1 .

Suy ra tập hợp các điểm biểu diễn số phức z là đường tròn x2+y2=1  có tâm  O(0;0)bán kính R=1 .

Khi đó IMmin=IOR=(3)2+421=51=4 .

Copyright © 2021 HOCTAP247