Cho hàm số y=|x^2-4x+2m-3| với m là tham số thực. Tìm m để giá trị lớn nhất của hàm số trên đoạn [1;3] đạt giá trị nhỏ nhất bằng 1/2 .

Câu hỏi :

Cho hàm số y=|x24x+2m3|  với m là tham số thực. Tìm m để giá trị lớn nhất của hàm số trên đoạn [1;3]   đạt giá trị nhỏ nhất bằng 12 .

A.   12

B.  134

C.  94

D. 6

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Xét hàm số f(x)=x24x+2m3  liên tục trên đoạn [1;3]  .

Ta có: f'(x)=2x4=0x=2[1;3]  .

Ta lại có: f(1)=2m6; f(2)=2m7; f(3)=2m6 .

Suy ra: max[1;3]|f(x)|=max{|2m6|;|2m7|}=M .

Ta có: {M|2m6|M|2m7|=|72m|2M|2m6|+|72m||2m6+72m|=1

M12.

Dấu “=” xảy ra khi và chỉ khi {|2m6|=|2m7|=12(2m6)(72m)0m=134 .

Vậy m=134  .

Copyright © 2021 HOCTAP247