Trên cánh đồng có 2 con bò được cột vào 2 cây cọc khác nhau. Biết khoảng cách giữa hai cọc là 4 mét, còn 2 sợi dây cột 2 con bò dài 3 mét và 2 mét. Tính phần diện tích mặt cỏ lớn n...

Câu hỏi :

Trên cánh đồng có 2 con bò được cột vào 2 cây cọc khác nhau. Biết khoảng cách giữa hai cọc là 4 mét, còn 2 sợi dây cột 2 con bò dài 3 mét và 2 mét. Tính phần diện tích mặt cỏ lớn nhất mà 2 con bò có thể ăn chung (lấy giá trị gần đúng nhất).

A.  1,989m2

B.  1,034m2

C.  1,574m2

D.  2,824m2

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Con bò thứ nhất có thể ăn cỏ trong hình tròn tâm A bán kính AC=3m .

Con bò thứ hai có thể ăn cỏ trong hình tròn tâm B bán kính  BC=2m.

Phần diện tích lớn nhất hai con có thể ăn chung là phần giao của hai hình tròn (phần gạch sọc).

Xét tam giác ABCAC=3;BC=2;AB=4 .

cosABC^=BA2+BC2AC22BA.BC=1116

ABC^46°34'CBD^93°8'SCBD=93°8'.πBC2360°3,251m2

SCAD=57°54'.πAC2360°4,548m2

Lại có  SΔCBD=12BC.BD.sinCBD^1,997m2và SΔCAD=12AC.AD.sinCAD^3,812m2

Vậy S=(SqCADSΔCAD)+(SqCBDSΔCBD)=(4,5483,812)+(3,2511,997)=1,99m2

Copyright © 2021 HOCTAP247