Cho khối chóp S.ABC có SA=SB=SC=a, góc ASB=60 độ, góc BSC= 90 độ, Góc ASC=120 độ. Gọi M, N lần lượt là các điểm trên cạnh AB và SC sao cho CN/SC=AM/AB . Khi khoảng cách giữa M và N...

Câu hỏi :

Cho khối chóp S.ABC có SA=SB=SC=a  ASB^=60°, BSC^=90°, ASC^=120°  . Gọi M, N lần lượt là các điểm trên cạnh ABSC sao cho CNSC=AMAB . Khi khoảng cách giữa MN nhỏ nhất, tính thể tích V của khối chóp S.AMN.

A.  2a372

B.  52a372

C. 52a3432

D.  2a3432

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Cho khối chóp S.ABC có  SA=SB=SC=a,  góc ASB=60 độ, góc BSC= 90 độ, Góc ASC=120 độ. Gọi M, N lần lượt là các điểm trên cạnh AB và SC sao cho CN/SC=AM/AB . Khi khoảng cách giữa M và N nhỏ nhất, tính thể tích V của khối chóp S.AMN. (ảnh 1)

Ta có thể tích khối chóp S.ABC

V0=a361(12)2(12)2=2a312.

 

Đặt  CNSC=AMAB=m  (với 0m1 ).

Ta có: SA=a, SB=b, SC=c, |a|=|b|=|c|=a  ,

a.b=a22, b.c=0, a.c=a22.

Theo đẳng thức trên ta có đẳng thức véctơ SN=(1m)c  SM=SA+AM=a+mAB=a+m(ba)

MN=SNSM=(1m)c[a+m(ba)]=(m1)amb+(1m)c.

Do đó MN2=[(m1)amb+(1m)c]2=(3m25m+3)a211a212 .

Dấu “=” xảy ra tại m=56

V=SNSC.VS.ABC=SNSC.AMABV0=m(1m)V0=56.16.2a312=52a3432.

Copyright © 2021 HOCTAP247