Cho hàm số y=f(x) xác định trên R và hàm số y=f'(x) đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số y=f(x^2+3)

Câu hỏi :

Cho hàm số y=f(x) xác định trên R và hàm số y=f'(x) đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số y=f(x23)
Cho hàm số y=f(x)  xác định trên R  và hàm số y=f'(x)  đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số  y=f(x^2+3) (ảnh 1)

A. 4. 

B. 2.

C. 5.

D. 3.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Quan sát đồ thị ta có  y=f'(x) đổi dấu từ âm sang dương qua x=2  nên hàm số  có một điểm cực trị là x=2 .

Ta có: y'=[f(x23)]'=2x.f'(x23)=0[x=0x23=2x23=1[x=0x=±1x=±2 .

x=±2  là nghiệm kép, còn các nghiệm còn lại là nghiệm đơn nên hàm số y=f(x23)   có ba cực trị.

Copyright © 2021 HOCTAP247