Cho hai số phức z1,z2 khác 0 thỏa mãn z1/z2số thuần ảo và |z1-z2|=10 . Giá trị lớn của |z1|+|z2| bằng:

Câu hỏi :

Cho hai số phức z1,z2  khác 0 thỏa mãn z1z2  là số thuần ảo và |z1z2|=10 . Giá trị lớn của |z1|+|z2|   bằng:

A. 10.

B. 102.

C. 103.

D. 20.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có: z1z2  là số thuần ảo nên ta viết lại z1z2=kiz1=kiz2 .

Khi đó |z1z2|=10|kiz2z2|=10|z2(1+ki)|=1010|1+ki|=10k2+1|z1|=|ki|.|z2|=|k|.10k2+1|z1|+|z2|=10|k|k2+1=10(|k|+1)k2+1

Xét y=f(t)=10(t+1)t2+110(t+1)=yt2+1100(t+1)2=y2(t2+1)100(t2+2t+1)=y2t2+y2(y2100)t2+y2100=0

Phương trình có nghiệm Δ'=1002(y2100)2=y2(200y2)0102y102

Vậy maxy=102   khi t=1  hay k=±1 .

Copyright © 2021 HOCTAP247