Cho phương trình log2^2(x) - (5m +1)log2(x) + 4m^2 + m = 0

Câu hỏi :

Cho phương trình log22x5m+1log2x+4m2+m=0. Biết phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn x1+x2=165. Giá trị của x1x2 bằng

A. 16.                          

B. 159.                        

C. 119.                        

D. 120. 

* Đáp án

B

* Hướng dẫn giải

Điều kiện:  x > 0.

Đặt t=log2x, ta được phương trình

                                         t25m+1t+4m2+m=0 *.

Ta có: Δ=5m1244m2+m=3m+12.

Phương trình (*) có hai nghiệm phân biệt Δ>03m+12>0m13.

Khi đó, phương trình (*) có hai nghiệm phân biệt t1=5m+1+3m+12=4m+1, t2=5m+13m12=m x1=24m+1,x2=2m.

Theo bài, x1+x2=16524m+1+2m=1652.24m+2m=165.

Đặt u=2m>0, ta có phương trình 2u4+u165=0u32u3+6u2+18u+55=0 u=3 (vì 2u3+6u2+18u+55>0 u>0)2m=3.

Vậy x1x2=2.24m2m=2.343=159.

Chọn B.

Copyright © 2021 HOCTAP247