Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A

Câu hỏi :

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, cạnh BC = 2a ABC^=600. Biết tứ giác BCC'B' là hình thoi có B'BC^ là góc nhọn. Mặt phẳng (BCC'B') vuông góc với (ABC) và mặt phẳng (ABB'A') tạo với mặt phẳng (ABC) một góc 450. Thể tích khối lăng trụ ABC.A'B'C' bằng

A. 7a321.

B. 67a37.

C. 7a37.

D. 37a37.

* Đáp án

D

* Hướng dẫn giải

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A (ảnh 1)

Kẻ B'HBC tại H (do BB'C^ là góc nhọn nên H thuộc đoạn BC),HKAB tại K và giả sử B'H = x với x > 0.

Ta có: BCC'B'ABCBCC'B'ABC=BCB'HBCC'B',B'HBCB'HABC.

Do ABHKABB'H nên ABB'HKABB'K.

Từ đó suy ra ABB'A',ABC^=B'K,HK^=B'KH^=450ΔB'HK vuông cân tại H.

HK=B'H=x.

Trong tam giác BKH vuông tại K có: BH=HKsinABC^=2x33.

Do tứ giác BCC'B' là hình thoi nên BB' = BC = 2a

Trong tam giác B'HB vuông tại H có: BH2+B'H2=BB'24x23+x2=4a2x=2a217.

Trong tam giác ABC vuông tại A có: AC=BC.sin600=a3;AB=BC.cos600=a.

SABC=12AB.AC=a232.

Vậy thể tích khối lăng trụ ABC.A'B'C' là V=B'H.SABC=2a217.a232=37a37.

Chọn D.

Copyright © 2021 HOCTAP247