Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC=2a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng (SBC) bằng 300 (tham khảo hình bên). Thể tích của khối chóp S.ABC bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A (ảnh 1)

A. 6a336.

B. 6a312.

C. 2a312.

D. 6a34.

* Đáp án

B

* Hướng dẫn giải

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A (ảnh 2)

Gọi M là trung điểm của BC. Nối SM kẻ AH vuông góc với SM tại H

Ta có:

BCAM (do M là trung điểm của BC và tam giác ABC vuông cân tại A)

BCSA (do SAABC,BCABC)

Nên: BCSAMBCAH (vì AHSAM)

Lại có: AHSM (cách dựng)

Suy ra: AHSBC tại H

H là hình chiếu của A trên (SBC).

SH là hình chiếu của SA trên (SBC).

SA,SBC^=SA,SH^=ASH^=ASM^ASM^=300

+) Tam giác ABC vuông cân tại A2AB2=BC2=2a2AB=aAC=AB=a

SABC=12AB.AC=a22

Có: AM=12BC=a22

Tam giác SAM vuông tại ASA=AMtan300=a62

Vậy thể tích của khối chóp S.ABC là: VS.ABC=13.SA.SABC=13.a62.a22=a3612.

Chọn B.

Copyright © 2021 HOCTAP247