Có bao nhiêu giá trị nguyên a thuộc [1; 20] sao cho bất phương trình

Câu hỏi :

Có bao nhiêu giá trị nguyên a1;20 sao cho bất phương trình 2xa+1xa+79x+1x nghiệm đúng với mọi x0;+? 

A. 17.                          

B. 18.                          

C. 20.                          

D. 19.

* Đáp án

B

* Hướng dẫn giải

Trường hợp a = 1: bất phương trình đã cho trở thành

2x+1x+79x+1xx+1x20x1220x=1 (do x > 0)

a=1 không thỏa mãn yêu cầu bài toán.

Trường hợp a = 2: bất phương trình đã cho trở thành

2x2+1x2+79x+1x2x+1x29x+1x+100x+1x52x+1x2

 

2x25x+20x22x+10x20<x12x=1(do x > 0).

a=2 không thỏa mãn yêu cầu bài toán.

Trường hợp a3:

Xét hàm số fa=2xa+1xa+7=2xa+xa+7 với x là tham số dương.

Ta có: f'a=2xa.lnxxa.lnx=2xa1xalnx.

+) Nếu 0 < x < 1 thì xax3<1<1xa và lnx<0f'a>0,a3.

+) Nếu x = 1 thì f'(a) = 0

+) Nếu x > 1 thì xax3>1>1xa và lnx>0f'a>0,a3.

Từ đó suy ra f'a0,a3, tức là hàm số f(a) đồng biến trên nửa khoảng 3;+.

faf32xa+1xa+72x3+1x3+7=2x+1x36x+1x+14.

Đặt t=x+1x (điều kiện: t2, do x+1x2x.1x=2), ta được:

2xa+1xa+72t36t+14=t22t2+4t7+9t9t,t2

2xa+1xa+79x+1x,x>0.

 

Suy ra với a3 thì bất phương trình đã cho nghiệm đúng với mọi x0;+.

Mặt khác, do a nguyên và a1;20 nên a3;...;20.

Vậy có 18 giá trị nguyên của a thỏa mãn.

Chọn B.

Copyright © 2021 HOCTAP247