Diện tích hình phẳng giới hạn bởi parabol y = x^2 + x - 2 và đường thẳng

Câu hỏi :

Diện tích hình phẳng giới hạn bởi parabol y=x2+x2 và đường thẳng y=m+1+2 có giá trị nhỏ nhất bằng

A. 11

B. 212.

C. 323.

D. 232.

* Đáp án

C

* Hướng dẫn giải

Phương trình hoành độ giao điểm của parabol và đường thẳng đã cho là

x2+x2=m+1x+2x2mx4=0 1.

Do phương trình (1) có P = -4 < 0 nên nó luôn có hai nghiệm phân biệt trái dấu. Giả sử hai nghiệm đó là x1,x2x1<x2. Theo định lí Vi-ét ta có:

x1+x2=mx1.x2=4.

 

Diện tích hình phẳng giới hạn bởi parabol y=x2+x2 và đường thẳng y=m+1x+2 là:

S=x1x2x2+x2m+1x+2dx=x1x2x2mx4dx=x1x2x2mx4dx=x2x1x2mx4dx

=13x3m2x24xx1x2=13x13x23m2x12x224x1x2

=16x1x22x12+x1x2+x223mx1+x224

=16x1x22x1+x222x1x23mx1+x224

=16x1x22m2+83m2=24=16x1x2m2+16.

Suy ra S2=136x2x12m2+162=136x1+x224x1x2m2+162=136m2+163

S2136.163=10249S323.

 

Dấu “=” xảy ra m=0

Vậy Smin=323 khi m = 0.

Chọn C.

Copyright © 2021 HOCTAP247