Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S)

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x32+y22+z12=3 có tâm I và đường thẳng d:x12=y+63=z+22. Gọi A là điểm nằm trên đường thẳng d. Từ A kẻ các tiếp tuyến AB, AC, AD đến mặt cầu (S) với B, C, D là các tiếp điểm. Khi thể tích khối chóp I.BCD đạt giá trị lớn nhất, mặt phẳng (BCD) có phương trình là mx+ny+pz+12=0. Giá trị của m + n + p bằng 

A. 4

B. -4

C. -2

D. 2

* Đáp án

C

* Hướng dẫn giải

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) (ảnh 1)
Mặt cầu S:x32+y22+z12=3 có tâm I(3; 2; 1) và bán kính R=3.

Gọi M là tâm đường tròn ngoại tiếp tam giác BCD

Trong các tam giác nội tiếp đường tròn thì tam giác đều có diện tích lớn nhất, vì vậy thể tích khối chóp I.BCD đạt giá trị lớn nhất khi thể tích khối nón đỉnh I đáy là đường tròn (I, IM) lớn nhất.

Gọi IM=x,0<x<3 ta có thể tích khối nón V=13IM.π.MB2=π3.x.3x2.

V đạt giá trị lớn nhất khi x = 1

Xét tam giác ABI vuông tại B, có đường cao BM tính được IA=IB2IM=3,AB=6.

Gọi A1+2t;6+3t;2+2td,IA=32t22+3t82+2t32=9t=2.

Tọa độ điểm A(5; 0; 2). Phương trình mặt cầu tâm A bán kính AB là:

S1:x52+y2+z22=6. Mặt phẳng (BCD) chứa giao tuyến của (S) S1 có phương trình thỏa mãn hệ: x32+y22+z12=3x52+y2+z22=64x+4y2z+12=0.

Đồng nhất với mặt phẳng mx+ny+pz+12=0 ta có m + n + p = -2.

Chọn C.

 

Copyright © 2021 HOCTAP247