Xét bất phương trình log2^2(2x) - 2(m + 1)log2(x) - 2 < 0

Câu hỏi :

Xét bất phương trình log222x2m+1log2x2<0. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng 2;+.

A. m0;+

B. m34;0

C. m34;+

D. m;0

* Đáp án

C

* Hướng dẫn giải

Ta có

     log222x2m+1log2x2<0

1+log2x22m+1log2x2<0

log22x+2log2x+12m+1log2x2<0

log22x2mlog2x1<0

Đặt t=log2x, phương trình đã cho trở thành: t22mt1<0 *.

Ta có Δ'=m2+1>0 m nên tập nghiệm của bất phương trình (*) là: tmm2+1;m+m2+1

Vì phương trình ban đầu phải có nghiệm thuộc khoảng x2;+t12;+ nên phương trình (*) phải có nghiệm t12;+.

mm2+1;m+m2+112;+.

m+m2+1>12m2+1>12m

12m<012m0m2+1>m2m+14m>12m12m>34m>34


Vậy m34;+.

Chọn C.

Copyright © 2021 HOCTAP247