Cho lăng trụ tam giác ABC.A'B'C'. M, N lần lượt là trung điểm AB, AC; P

Câu hỏi :

Cho lăng trụ tam giác ABC.A'B'C'. M, N lần lượt là trung điểm AB, AC; P thuộc đoạn CC' sao cho CPCC'=x. Tìm x để mặt phẳng (MNP) chia khối lăng trụ thành hai khối đa diện có tỉ lệ thể tích là 12.

A. 85

B. 58

C. 45

D. 54

* Đáp án

C

* Hướng dẫn giải

Cho lăng trụ tam giác ABC.A'B'C'. M, N lần lượt là trung điểm AB, AC; P (ảnh 1)

Xác định thiết diện của hình chóp cắt bởi (MNP)

Xét (MNP) và (BCC'B') có P chung, MN//BC (MN là đường trung bình của tam giác ABC)

MNPBCC'B'=PQ//MN//BCQBB'.

 Thiết diện của hình chóp cắt bởi () là MNPQ.

Tính tỉ số thể tích

Khi đó mặt phẳng (MNP) chia hình lăng trụ thành 2 khối đa diện BCMNPQ và MNPQAA'B'C'.

Đặt VABC.A'B'C'=V,VBCMNPQ=V1,VMNPQAA'B'C'=V2.

Theo bài ra ta có V1V2=12V1=13V.

Ta có: V1=VP.MNBC+VP.BMQ

VP.MNBCV=13.dP;ABCdC';ABC.SMNPQSABC

     

=13.PCC'C.SABCSAMNSABC

     =13.x.SABC14SABCSABC=14x

VP.BMQV=VC'.BMQ32VC'.ABB'A'=23SBMQSABB'A'=23.12.x.SABB'2SABB'=16x


V1V=14x+16x=512x=13x=45.

Chọn C.

Copyright © 2021 HOCTAP247