Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, AD = a căn bậc hai của 3

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a,AD=a3. Biết SAABCD và mặt phẳng (SBD) hợp với mặt phẳng đáy một góc 300. Tính thể tích V của khối chóp S.ABCD

A. V=a332

B. V=a333

C. V=a36

D. V=a336

* Đáp án

D

* Hướng dẫn giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, AD = a căn bậc hai của 3 (ảnh 1)

Trong (ABCD) kẻ AHBDHBD ta có: BDAHBDSABDSAHBDSH.

SBDABCD=BDSHSBD,SHBDAHABCD,AHBDSBD;ABCD=SH;AH=SHA=300.

 

Áp dụng hệ thức lượng trong tam giác vuông ABD có: AH=AB.ADAB2+AD2=a.a3a2+3a2=a32.

SA=AH.tan300=a32.13=a2.

Vậy VS.ABCD=13SA.SABCD=13SA.AB.AD=13.a2.a.a3=a336.

Chọn D.

Copyright © 2021 HOCTAP247