Cho hàm số y = f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ bên. Bất phương

Câu hỏi :

Cho hàm số y = f(x) liên tục trên  và có đồ thị f'(x) như hình vẽ bên. Bất phương trình log5fx+m+2+fx>4m đúng với mọi x1;4 khi và chỉ khi:

Cho hàm số y = f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ bên. Bất phương (ảnh 1)

A. m3f1

B. m3f4

C. m4f1

D. m4f-1

* Đáp án

B

* Hướng dẫn giải

Ta có

     log5fx+m+2+fx>4m

log9fx+m+2+fx+m+2>6

Đặt t=fx+m+2, bất phương trình trở thành log5t+t>6t>0.

Xét hàm số gt=log5t+tt>0 ta có g't=1tln5+1>0 t>0, do đó hàm số đồng biến trên 0;+.

Lại có g5=log55+5=6 nên ta có gt>g5t>5.

Khi đó ta có fx+m+2>5fx>3m có nghiệm với mọi x1;43mmin1;4fx.

Dựa vào đồ thị hàm số y = f'(x) ta có BBT như sau:

Cho hàm số y = f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ bên. Bất phương (ảnh 2)

Ta cần so sánh f(-1) và f(4)

Ta có:

11f'xdx<14f'xdx

f1f1<f4+f1

f1>f4

Do đó min1;4fx=f4.

Vậy 3mf4m3f4.

Chọn B.

Copyright © 2021 HOCTAP247