Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, cạnh bên SA vuông góc

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SC với mặt phẳng (SAB) bằng 300. Thể tích của khối chóp S.ABCD bằng:

A. 8a33

B. 82a33

C. 22a33

D. 2a33

* Đáp án

B

* Hướng dẫn giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, cạnh bên SA vuông góc (ảnh 1)

Ta có: BCABBCSABCSABSB là hình chiếu vuông góc của SC lên (SAB)

SC;SAB=SC;SB=BSC=300.

Xét tam giác vuông SBC có SB=BC.cot300=2a3.

Xét tam giác vuông SAB:SA=SB2AB2=12a24a2=22a.

Vậy VS.ABCD=13SA.SABCD=13.22a.2a2=82a33.

Chọn B.

Copyright © 2021 HOCTAP247