Trong mặt phẳng cho hai tia Ox, Oy và Trên tia Oz vuông góc với mặt phẳng tại O, lấy điểm S sao cho SO = a. Gọi M, N là các điểm lần lượt di động trên hai tia Ox, Oy sao cho OM + ON = a (a > 0 và M, N khác O). Gọi H, K là hình chiếu vuông góc của O trên hai cạnh SM, SN. Mặt cầu ngoại tiếp đa diện MNHOK có diện tích nhỏ nhất bằng
A.
B.
C.
D.
D
Gọi I là tâm đường tròn ngoại tiếp tam giác OMN, D' là điểm đối xứng với I qua O
Ta có:
Chứng minh tương tự ta có
là tâm mặt cầu ngoại tiếp khối đa diện MNHOK.
Gọi P và Q là trung điểm OM và ON nên P và Q là tâm đường tròn ngoại tiếp tam giác OHM và OKN.
Ta có bán kính mặt cầu này là:
Ta có:
Lại có nên
Do đó ta có
Vậy
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247