Cho hàm số f(x) có đạo hàm trên R là f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên

Câu hỏi :

Cho hàm số f(x) có đạo hàm trên  f'x=x1x+3. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10; 2021] để hàm số y=fx2+3xm đồng biến trên khoảng (0; 2) 

A. 2016                       

B. 2019                       

C. 2018                       

D. 2017

* Đáp án

B

* Hướng dẫn giải

Đặt y=gx=fx2+3xm ta có g'x=2x+3f'x2+3xm.

Để hàm số đồng biến trên khoảng (0; 2) thì g'x0 x0;2 và bằng 0 tại hữu hạn điểm

2x+3f'x2+3xm0 x0;2.

f'x2+3xm0 x0;2 (do 2x+3>0 x0;2) (*)

Ta có: f'x=x1x+30x1x3

Do đó *x2+3xm1 x0;2x2+3xm3 x0;2x2+3xm+1 x0;2x2+3xm3 x0;2**.

Đặt hx=x2+3x, khi đó **hxm+1 x0;2hxm3 x0;2min0;2hxm+1max0;2hxm3.

Xét hàm số hx=x2+3x trên [0; 2] ta có h'x=2x+3=0x=320;2.

h0=0,h2=10 nên min0;2hx=0m+1max0;2hx=10m3m1m13.

Kết hợp điều kiện đề bài ta có m10;2021m. Vậy có 2019 giá trị của m thỏa mãn.

Chọn B.

Copyright © 2021 HOCTAP247