Cho đa thức f(x) với hệ số thực và thỏa mãn 2f(x) + f(1 - x) = x^2, mọi x thuộc R

Câu hỏi :

Cho đa thức f(x) với hệ số thực và thỏa mãn 2fx+f1x=x2,x. Biết tiếp tuyến tại điểm có hoành độ x = 1 của đồ thị hàm số y = f(x) tạo với hai trục tọa độ một tam giác. Tính diện tích của tam giác đó? 

A. 16

B. 32

C. 13

D. 23

* Đáp án

A

* Hướng dẫn giải

Ta có 2fx+f1x=x2,x

2f1x+fx=1x2,x

fx+2f1x=x22x+1,x

Ta có hệ:

2fx+f1x=x2fx+2f1x=x22x+14fx+2f1x=2x2fx+2f1x=x22x+1

3fx=x2+2x1fx=13x2+2x1f1=23

f'x=132x+2f'1=43

Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = 1 là:

                                   y=43x1+23y=43x23 d

Gọi A=dOx. Cho y=043x23=0x=12A12;0 và OA=12.

Gọi B=dOy. Cho x=0y=43.023=23B0;23 và OB=23.

Vậy SΔOAB=12OA.OB=12.12.23=16.

Chọn A.

Copyright © 2021 HOCTAP247