Cho mặt cầu S(O; 4) cố định. Hình nón (N) gọi là nội tiếp mặt cầu nếu hình nón (N)

Câu hỏi :

Cho mặt cầu S(O; 4) cố định. Hình nón (N) gọi là nội tiếp mặt cầu nếu hình nón (N) có đường tròn đáy và đỉnh thuộc mặt cầu S(O; 4) .Tính bán kính đáy r của (N) để khối nón (N) có thể tích lớn nhất.

A. r=32

B. r=423

C. r=22

D. r=823

* Đáp án

D

* Hướng dẫn giải

Cho mặt cầu S(O; 4) cố định. Hình nón (N) gọi là nội tiếp mặt cầu nếu hình nón (N) (ảnh 1)

Gọi r, h lần lượt là bán kính đáy và chiều cao của hình nón (N). Dễ thấy VN lớn nhất thì 4<h8. 

Áp dụng định lí Pytago ta có: r=42h42=8hh2.

VN=13πr2h=13π8hh2h=π38h2h3.

Xét hàm số fh=8h2h3 với h4;8 ta có: f'h=16h3h2=0h=0h=163.

BBT:

Cho mặt cầu S(O; 4) cố định. Hình nón (N) gọi là nội tiếp mặt cầu nếu hình nón (N) (ảnh 2)

Dựa vào BBT ta thấy max4;8fh=f163.

Vậy VN đặt GTLN khi h=163r=823.

Chọn D.

Copyright © 2021 HOCTAP247