Cho các số thực a, b, x, y thỏa mãn a > 1, b > 1 và a^2x = b^2y = căn bậc hai của ab

Câu hỏi :

Cho các số thực a, b, x, y thỏa mãn a > 1, b > 1 a2x=b2y=ab. Giá trị nhỏ nhất của biểu thức P=6x+y2 bằng:

A. 454

B. 3

C. 5416

D. 4516

* Đáp án

D

* Hướng dẫn giải

Theo bài ra ta có:

a2x=b2y=ab

2x=logaab=12+12logab2y=logbab=12+12logba

x=14+14.1logbay=x=14+14.logba

 

Đặt t=logba, a>1,b>1t=logba>logb1=0 ta có: x=14+14.1ty=14+14.tt>0

Khi đó ta có:

P=6x+y2=614+14.1t+14+14t2

P=32+32.1t+116+18t+116t2

P=116t2+18t+32t+2516t>0

 

Ta có

P'=18t+1832t2=t3+t2128t2

P'=0t3+t212=0t=2tm

BBT:

Cho các số thực a, b, x, y thỏa mãn a > 1, b > 1 và a^2x = b^2y = căn bậc hai của ab (ảnh 1)

Vậy Pmin=P2=4516.

Chọn D.

Copyright © 2021 HOCTAP247