Cho tam giác OAB đều cạnh 2a. Trên đường thẳng d qua O và vuông góc với mặt phẳng (OAB) lấy điểm M sao cho OM = x. Gọi E, F lần lượt là hình chiếu vuông góc của A trên MB và OB. Gọi N là giao điểm của EF và d. Tìm x để thể tích tứ diện ABMN có giá trị nhỏ nhất.
A.
B.
C.
D.
D
Ta có
Tam giác OAB đều cạnh 2a nên không đổi.
Do đó đạt giá trị nhỏ nhất khi MN đạt giá trị nhỏ nhất.
Ta có: đều là trung điểm của OB.
Ta có
Dấu "=" xảy ra
Vậy đạt giá trị nhỏ nhất khi
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247