Có bao nhiêu cặp số nguyên dương (x, y) thỏa mãn

Câu hỏi :

Có bao nhiêu cặp số nguyên dương (x, y) thỏa mãn lnx+15y+125y4+10y3x2y22y2x, với y2022? 

A. 10246500               

B. 10226265               

C. 2041220                 

D. 10206050 

* Đáp án

B

* Hướng dẫn giải

Ta có: 25y4+10y3x2y22y2x

=25y4+10y3+y2x2y22y2xy2

=25y4+10y3+y2x2y2+2y2x+y2

=y225y2+10y+1y2x2+2x+1

=y25y+12x+12

Do đó: lnx+15y+125y2+10y3x2y22y2x

lnx+1ln5y+1y25y+12x+12

+) TH1: x+1>5y+1 thì vế phải âm (không thỏa mãn).

+) TH2: x+15y+1 thì vế trái không dương, vế phải không âm nên sẽ luôn thỏa mãn khi

x+1>05y+1>0x+1<05y+1<0x+15y+1x>1y>15x<1y<15x5y. Do x, y là số nguyên dương nên ta có:

x>1y>15x5yx1y1x5yy2022;x,y.

 

Vậy y1;2022,x1;10110.

Ứng với mỗi y nguyên dương có 5y cặp (x, y) Do đó số cặp:

51+2+3+...+2022=5.2022.20232=10226265 cặp.

Chọn B.

Copyright © 2021 HOCTAP247