Trong hệ tọa độ Oxyz, cho tam giác ABC với A(1; -2; 3), B(-1; -2; 1), C(1; 0; 1)

Câu hỏi :

Trong hệ tọa độ Oxyz, cho tam giác ABC với A1;2;3,B1;2;1,C1;0;1. Gọi M là một điểm di động trên mặt cầu S:x2+y2+z22x+4y2z+2=0 sao cho hình chiếu vuông góc của M lên các cạnh AC,AB,BC lần lượt là H, K, E. Hỏi có bao nhiêu điểm M thuộc mặt cầu (S) sao cho T=AK2+BE2+CH2 đạt giá trị nhỏ nhất.

A. 3                             

B. vô số.                      

C. 1                             

D. 2.

* Đáp án

D

* Hướng dẫn giải

Chọn D.

(S) có tâm I(1; -2; 1) và bán kính R=12+22+122=2.

AB=AC=BC=22 hay tam giácABC đều. Và A,B,CS.

Gọi G13;43;53 là trọng tâm tam giác ABC

Trong hệ tọa độ Oxyz, cho tam giác ABC với A(1; -2; 3), B(-1; -2; 1), C(1; 0; 1) (ảnh 1)

Xét đường tròn ngoại tiếp tam giác ABC. Kẻ các đường kính CD,AF,BQ.

Gọi J là hình chiếu vuông góc của M lên (ABC), J nằm trong hình lục giác đều ADBFCQ.

* Với J trùng với một trong 3 điểm A, B, C hay M trùng với một trong 3 điểm A, B, C.

Ta có T=AK2+BE2+CH2=222+02+22=10

* Với J không trùng với 3 điểm A, B, C

Ta có T=AK2+BE2+CH2AK+BE+CH23=3223=6.

Dấu bằng xảy ra khi AK=BE=CH.

Suy ra Tmin=6 khi J trùng với trọng tâm G của tam giác ABC hay MA=MB=MC.

Vậy có 2 điểm M cần tìm.

Copyright © 2021 HOCTAP247