Có bao nhiêu số nguyên dương của tham số m để hàm số y = |x4 – mx2 – 64x| có đúng 3 điểm cực trị?
A. 23.
B. 12.
C. 24.
Đáp án đúng là: C
Xét hàm số g(x) = x4 – mx2 – 64x; g'(x) = 4x3 – 2mx – 64; có = +¥.
g(x) = 0 Û
Với x = 0 thay vào phương trình (*) ta thấy vô lí
Þ g(x) = 0 có ít nhất 2 nghiệm phân biệt.
Do đó hàm số y = |g(x)| có đúng 3 điểm cực trị
Û hàm số y = g(x) có đúng 1 cực trị
Û g'(x) đổi dấu đúng 1 lần (**).
Nhận xét nếu x = 0 Þ g'(0) = −64 < 0
Þ g(x) không có cực trị (hay x = 0 không thoả mãn).
Nên g'(x) = 0 Û m = 2x2 − .
Đặt h(x) = 2x2 − .
Có h'(x) = 4x + = ;
Ta có h'(x) = 0 Û x = −2.
Bảng biến thiên
Từ bảng biến thiên suy ra (**) Û m ≤ 24.
Kết hợp với điều kiện m nguyên dương suy ra m Î {1; 2; 3;…; 24}.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247