Bài tập 45 trang 20 SGK Toán 8 Tập 1

Lý thuyết Bài tập
Câu hỏi:

Bài tập 45 trang 20 SGK Toán 8 Tập 1

Tìm x, biết:

a) \(2 - 25{x^2} = 0;\)

b)\({x^2} - x + \frac{1}{4} = 0\)

Câu a:

 \(\begin{array}{l} 2 - 25{x^2} = 0\\ {(\sqrt 2 )^2} - {(5x)^2} = 0\\ (\sqrt 2 - 5x)(\sqrt 2 + 5x) = 0 \end{array}\)

Hoặc\(\sqrt 2 - 5x = 0 \Rightarrow 5x = \sqrt 2 \Rightarrow x = \frac{{\sqrt 2 }}{5}\)

Hoặc\(\sqrt 2 + 5x = 0 \Rightarrow 5x = - \sqrt 2 \Rightarrow x = - \frac{{\sqrt 2 }}{5}\)

Câu b:

\(\begin{array}{l} {x^2}\; - x + \frac{1}{4}\; = 0{\rm{ }}\\ \Rightarrow \;{x^2}-2.x.\;\frac{1}{2}\; + {\rm{ }}{(\frac{1}{2})^2} = 0\;{\rm{ }}\;\\ \Rightarrow {(x - \;\frac{1}{2})^2}\; = 0{\rm{ }}\\ = > x - \frac{1}{2}\; = 0{\rm{ }}\\ = > x{\rm{ }} = \frac{1}{2} \end{array}\)

 

-- Mod Toán 8

Copyright © 2021 HOCTAP247