A. \(8a^3\)
B. \(2a^3\)
C. \(a^3\)
D. \(6a^3\)
A. 1
B. 2
C. 0
D. 5
A. \(\left( {1;\,2;\,3} \right)\)
B. \(\left( { - 1;\, - 2;\,3} \right)\)
C. \(\left( {3;\,5;\,1} \right)\)
D. \(\left( {3;\,4;\,1} \right)\)
A. \((0;1)\)
B. \(\left( { - \infty ;1} \right)\)
C. \(\left( { - 1;1} \right)\)
D. \(\left( { - 1;0} \right)\)
A. \(2\log a + \log b\)
B. \(\log a + 2\log b\)
C. \(2\left( {\log a + \log b} \right)\)
D. \(\log a + \frac{1}{2}\log b\)
A. \(-3\)
B. \(12\)
C. \(-8\)
D. \(1\)
A. \(\frac{{4\pi {a^3}}}{3}\)
B. \(4\pi {a^3}\)
C. \(\frac{{\pi {a^3}}}{3}\)
D. \(2\pi {a^3}\)
A. \({0}\)
B. \({0;1}\)
C. \({-1;0}\)
D. \({1}\)
A. \(5\)
B. \(x + y + z = 0\)
C. \(y=0\)
D. \(x=0\)
A. \({{\rm{e}}^x} + {x^2} + C\)
B. \({{\rm{e}}^x} + \frac{1}{2}{x^2} + C\)
C. \(\frac{1}{{x + 1}}{{\rm{e}}^x} + \frac{1}{2}{x^2} + C\)
D. \({{\rm{e}}^x} + 1 + C\)
A. \(Q\left( {2; - 1;2} \right)\)
B. \(M\left( { - 1; - 2; - 3} \right)\)
C. \(P\left( {1;2;3} \right)\)
D. \(N\left( { - 2;1; - 2} \right)\)
A. \(C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\)
B. \(C_n^k = \frac{{n!}}{{k!}}\)
C. \(C_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\)
D. \(C_n^k = \frac{{k!\left( {n - k} \right)!}}{{n!}}\)
A. 22
B. 17
C. 12
D. 250
A. N
B. P
C. M
D. Q
A. \(y = \frac{{2x - 1}}{{x - 1}}\)
B. \(y = \frac{{x + 1}}{{x - 1}}\)
C. \(y = {x^4} + {x^2} + 1\)
D. \(y = {x^3} - 3x - 1\)
A. 0
B. 1
C. 4
D. 5
A. 3
B. 2
C. 5
D. 1
A. \(a = 0,\,\,b = 2\)
B. \(a = \frac{1}{2},\,\,b = 1\)
C. \(a = 0,\,\,b = 1\)
D. \(a = 1,\,\,b = 2\)
A. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 29\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 5\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 25\)
D. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 5\)
A. \(\frac{{3a}}{4}\)
B. \(\frac{3}{{4a}}\)
C. \(\frac{4}{{3a}}\)
D. \(\frac{{4a}}{3}\)
A. \(2\sqrt 5 \)
B. \(\sqrt 5 \)
C. \(3\)
D. \(10\)
A. \(\frac{8}{3}\)
B. \(\frac{7}{3}\)
C. \(3\)
D. \(\frac{4}{3}\)
A. \(\left( { - \infty ; - 1} \right)\)
B. \(\left( {3; + \infty } \right)\)
C. \(\left( { - 1;3} \right)\)
D. \(\left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)
A. \(\int\limits_{ - 1}^2 {\left( {2{x^2} - 2x - 4} \right)\,{\rm{d}}x} \)
B. \(\int\limits_{ - 1}^2 {\left( { - 2x + 2} \right)\,{\rm{d}}x} \)
C. \(\int\limits_{ - 1}^2 {\left( {2x - 2} \right)\,{\rm{d}}x} \)
D. \(\int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)\,{\rm{d}}x} \)
A. \(\frac{{\sqrt 3 \pi {a^3}}}{3}\)
B. \(\frac{{\sqrt 3 \pi {a^3}}}{2}\)
C. \(\frac{{2\pi {a^3}}}{3}\)
D. \(\frac{{\pi {a^3}}}{3}\)
A. 4
B. 1
C. 3
D. 2
A. \(\frac{{4\sqrt 2 {a^3}}}{3}\)
B. \(\frac{{8{a^3}}}{3}\)
C. \(\frac{{8\sqrt 2 {a^3}}}{3}\)
D. \(\frac{{2\sqrt 2 {a^3}}}{3}\)
A. \(f'\left( x \right) = \frac{{\ln 2}}{{{x^2} - 2x}}\)
B. \(f'\left( x \right) = \frac{1}{{\left( {{x^2} - 2x} \right)\ln 2}}\)
C. \(f'\left( x \right) = \frac{{\left( {2x - 2} \right)\ln 2}}{{{x^2} - 2x}}\)
D. \(f'\left( x \right) = \frac{{2x - 2}}{{\left( {{x^2} - 2x} \right)\ln 2}}\)
A. 4
B. 3
C. 2
D. 1
A. \(30^0\)
B. \(60^0\)
C. \(45^0\)
D. \(90^0\)
A. 2
B. 1
C. 7
D. 3
A. \(24{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
B. \(15{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\)
C. \(20{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
D. \(10{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
A. \(2{x^2}\ln x + 3{x^2}\)
B. \(2{x^2}\ln x + {x^2}\)
C. \(2{x^2}\ln x + 3{x^2} + C\)
D. \(2{x^2}\ln x + {x^2} + C\)
A. \(\frac{{a\sqrt {21} }}{7}\)
B. \(\frac{{a\sqrt {15} }}{7}\)
C. \(\frac{{a\sqrt {21} }}{3}\)
D. \(\frac{{a\sqrt {15} }}{3}\)
A. \(\frac{{x + 1}}{{ - 1}} = \frac{{y + 1}}{{ - 4}} = \frac{{z + 1}}{5}\)
B. \(\frac{{x - 1}}{3} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\)
C. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{4} = \frac{{z - 1}}{{ - 5}}\)
D. \(\frac{{x - 1}}{1} = \frac{{y + 4}}{1} = \frac{{z + 5}}{1}\)
A. \(\left( { - \infty ;\,0} \right]\)
B. \(\left[ { - \frac{3}{4};\, + \infty } \right)\)
C. \(\left( { - \infty ;\, - \frac{3}{4}} \right]\)
D. \(\left[ {0;\, + \infty } \right)\)
A. \(\left( {1; - 1} \right)\)
B. \((1;1)\)
C. \((-1;1)\)
D. \((-1;-1)\)
A. \(-2\)
B. \(-1\)
C. \(2\)
D. \(1\)
A. \(m \ge f\left( 1 \right) - {\rm{e}}\)
B. \(m > f\left( { - 1} \right) - \frac{1}{{\rm{e}}}\)
C. \(m \ge f\left( { - 1} \right) - \frac{1}{{\rm{e}}}\)
D. \(m > f\left( 1 \right) - {\rm{e}}\)
A. \(\frac{2}{5}\)
B. \(\frac{1}{{20}}\)
C. \(\frac{3}{5}\)
D. \(\frac{1}{{10}}\)
A. 135
B. 105
C. 108
D. 145
A. 4
B. 3
C. 1
D. 2
A. \(\left[ { - 1;3} \right)\)
B. \(\left( { - 1;1} \right)\)
C. \(\left( { - 1;3} \right)\)
D. \(\left[ { - 1;1} \right)\)
A. 2,22 triệu đồng
B. 3,03 triệu đồng
C. 2,25 triệu đồng
D. 2,20 triệu đồng
A.
\(\left\{ \begin{array}{l}
x = 2 + 9t\\
y = 1 + 9t\\
z = 3 + 8t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = 2 - 5t\\
y = 1 + 3t\\
z = 3
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = 2 + t\\
y = 1 - t\\
z = 3
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 2 + 4t\\
y = 1 + 3t\\
z = 3 - 3t
\end{array} \right.\)
A. 7.322.000 đồng
B. 7.213.000 đồng
C. 5.526.000 đồng
D. 5.782.000 đồng
A. \(1\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{2}\)
D. \(\frac{2}{3}\)
A. \(\left( {1; + \infty } \right)\)
B. \(\left( { - \infty ; - 1} \right)\)
C. \(\left( { - 1;0} \right)\)
D. \(\left( {0;2} \right)\)
A. \( - \frac{3}{2}\)
B. \(1\)
C. \( - \frac{1}{2}\)
D. \( \frac{1}{2}\)
A. 4
B. 3
C. 1
D. 2
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247