A. 4
B. 8
C. 6
D. 10
A. \(V = \frac{{{a^3}}}{{12}}\)
B. \(V = \frac{{{a^3}}}{2}\)
C. \(V = \frac{{{a^3}}}{4}\)
D. \(V = \frac{{{a^3}}}{6}\)
A. \(SA = \frac{{a\sqrt 3 }}{2}.\)
B. \(SA = 2a\sqrt 3 .\)
C. \(SA = a\sqrt 3 .\)
D. \(SA = \frac{{a\sqrt 3 }}{3}.\)
A. \(V = \frac{{{a^3}\sqrt 3 }}{4}\)
B. \(V = \frac{{{a^3}\sqrt 3 }}{6}\)
C. \(V = \frac{{{a^3}}}{6}\)
D. \(V = \frac{{{a^3}\sqrt 3 }}{{12}}\)
A. 42 cm
B. 36 cm
C. 44 cm
D. 38 cm
A. \(\frac{{3a\sqrt 5 }}{5}\)
B. \(\frac{{3a\sqrt 2 }}{2}\)
C. \(\frac{{3a\sqrt {10} }}{{10}}\)
D. \(\frac{{a\sqrt 6 }}{6}\)
A. \(V = 2{a^3}\)
B. \(V = 4{a^3}\)
C. \(V = 6{a^3}\)
D. \(V = 3{a^3}\)
A. \(V = \frac{{\pi {a^3}\sqrt 6 }}{{12}}\)
B. \(V = \frac{{\pi {a^3}\sqrt 3 }}{{12}}\)
C. \(V = \frac{{\pi {a^3}\sqrt 2 }}{{24}}\)
D. \(V = \frac{{\pi {a^3}\sqrt 3 }}{{24}}\)
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{3\pi }}{{2\sqrt 3 }}.\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi \sqrt 2 }}{3}.\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{{\pi \sqrt 2 }}.\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{2\sqrt 3 }}{{3\pi }}.\)
A. \(S = 6\pi {a^2}\)
B. \(S = 24\pi {a^2}\)
C. \(S = \frac{4}{3}\pi {a^2}\)
D. \(S = 64\pi {a^2}\)
A. \(V = 4\pi {a^3}\sqrt 3\)
B. \(V = \frac{{2\pi {a^3}\sqrt 3 }}{3}\)
C. \(V=\frac{{4\pi {a^3}\sqrt 3 }}{3}\)
D. \(V={a^3}\sqrt 3\)
A. \(G\left( {\frac{{11}}{3};3;7} \right)\)
B. \(G\left( {\frac{{11}}{3}; - \frac{7}{3};3} \right)\)
C. \(G\left( {\frac{{11}}{3};\frac{7}{3};3} \right)\)
D. \(G\left( {\frac{{11}}{3};\frac{7}{2};3} \right)\)
A. \(\overrightarrow {{n_1}} = (1;1;1)\)
B. \(\overrightarrow {{n_2}} = (1; - 1; - 1)\)
C. \(\overrightarrow {{n_3}} = ( - 1; - 1;1)\)
D. \(\overrightarrow {{n_4}} = (1; - 1;1)\)
A. \(\,\overrightarrow {{u_1}} = \left( {0;3; - 1} \right).\)
B. \(\,\overrightarrow {{u_2}} = \left( {1;3; - 1} \right).\)
C. \(\,\overrightarrow {{u_3}} = \left( {1; - 3; - 1} \right).\)
D. \(\,\overrightarrow {{u_4}} = \left( {1;2;5} \right).\)
A. \(x + y - z - 2 = 0\)
B. \(y-z=0\)
C. \(z-x=0\)
D. \(x-y=0\)
A. \({(x - 1)^2} + {y^2} + {(z - 1)^2} = 1\)
B. \({(x - 1)^2} + {y^2} + {(z - 1)^2} = 4\)
C. \({(x - 3)^2} + {(y - 1)^2} + {(z + 2)^2} = 1\)
D. \({(x - 3)^2} + {(y - 1)^2} + {(z + 2)^2} = 4\)
A. \(2x - y - z = 0\)
B. \(2x - y + z = 0\)
C. \(x + 2y + z = 0\)
D. \(x - 2y - 1 = 0\)
A. \(\frac{x}{7} = \frac{{y - 1}}{1} = \frac{{z + 2}}{{ - 4}}\)
B. \(\frac{{x - 2}}{7} = \frac{y}{1} = \frac{{z + 1}}{{ - 4}}\)
C. \(\frac{{x + 1}}{7} = \frac{{y - 1}}{1} = \frac{{z - 3}}{{ - 4}}\)
D. \(\frac{{x + \frac{1}{2}}}{7} = \frac{{y - 1}}{1} = \frac{{z - \frac{1}{2}}}{{ - 4}}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247