Tính giá trị lượng giác của góc α trong mỗi trường hợp sau:
a) \(\cos \alpha = \frac{1}{4};\sin \alpha < 0\)
b) \(\sin \alpha = - \frac{1}{3};\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2}\)
c) \(\tan \alpha = \frac{1}{2}; - \pi < \alpha < 0\)
a) Ta có
\(\begin{array}{l}
\sin \alpha = - \sqrt {1 - c{\rm{o}}{{\rm{s}}^2}\alpha } \\
= - \sqrt {1 - \frac{1}{{16}}} = - \frac{{\sqrt {15} }}{4}\left( {do{\mkern 1mu} \sin \alpha < 0} \right)
\end{array}\)
\(\begin{array}{l}
\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = - \sqrt {15} \\
\cot \alpha = \frac{1}{{\tan \alpha }} = - \frac{{\sqrt {15} }}{{15}}
\end{array}\)
b) Vì \(\frac{\pi }{2} < \alpha < \frac{{3\pi }}{2} \)
\(\Rightarrow \cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \frac{{2\sqrt 2 }}{3}\)
\(\begin{array}{l}
\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{{2\sqrt 2 }} = \frac{{\sqrt 2 }}{4}\\
\cot \alpha = \frac{1}{{\tan \alpha }} = 2\sqrt 2
\end{array}\)
c)
Vì \(\left\{ \begin{array}{l}
- \pi < \alpha < 0\\
\tan \alpha = \frac{1}{2}
\end{array} \right. \Rightarrow \cos \alpha < 0\)
\(\begin{array}{l}
\Rightarrow \cos \alpha = - \frac{1}{{\sqrt {1 + {{\tan }^2}\alpha } }} = - \frac{{2\sqrt 2 }}{5}\\
\sin \alpha = \tan \alpha .\cot \alpha = - \frac{{\sqrt 5 }}{5}\\
\cot \alpha = \frac{1}{{\tan \alpha }} = 2
\end{array}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247