Chứng minh rằng với mọi α, β, γ ta có:
\(\cos \left( {\alpha + \beta } \right)\sin \left( {\alpha - \beta } \right) + \cos \left( {\beta + \gamma } \right)\sin \left( {\beta - \gamma } \right) + \cos \left( {\gamma + \alpha } \right)\sin \left( {\gamma - \alpha } \right) = 0\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\cos \left( {\alpha + \beta } \right)\sin \left( {\alpha - \beta } \right)\\
+ \cos \left( {\beta + \gamma } \right)\sin \left( {\beta - \gamma } \right)\\
+ \cos \left( {\gamma + \alpha } \right)\sin \left( {\gamma - \alpha } \right)
\end{array}\\
\begin{array}{l}
= \frac{1}{2}\left( {\sin 2\alpha - \sin 2\beta } \right)\\
+ \frac{1}{2}\left( {\sin 2\beta - \sin 2\gamma } \right)\\
+ \frac{1}{2}\left( {\sin 2\gamma - \sin 2\alpha } \right) = 0
\end{array}
\end{array}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247