Tính \(sin2a, cos2a, tan2a\), biết:
a) \(sina = -0,6\) và \(\pi < a < \frac{3\pi }{2}\);
b) \(cosa = -\frac{5}{13}\) và \(\frac{\pi }{2} < a < \pi\)
c) \(sina + cosa = \frac{1 }{2}\) và \(\frac{3\pi }{4} < a < \pi\)
Câu a:
Do \({\mathop{\rm sina}\nolimits} = - 0,6,\pi < a < \frac{{3\pi }}{2}\) nên ta có:
\({\rm{cosa = - }}\sqrt {1 - {{\sin }^2}a} = - \sqrt {1 - {{( - 0,6)}^2}} = - \sqrt {1 - 0,36} \)
\( = - \sqrt {0,64} = - 0,8\) và \({\rm{tana = }}\frac{{\sin a}}{{\cos a}} = \frac{{ - 0,6}}{{ - 0,8}} = \frac{3}{4}\)
Vậy ta có:
* \(\sin 2a = 2\sin a.\cos a = 2.( - 0,6).( - 0,8) = 0,96\)
* \(\cos 2a = 1 - 2{\sin ^2}a = 1 - 2.{(0,6)^2} = 0,28\)
* \(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{0,96}}{{0,28}} = \frac{{96}}{{28}} = \frac{{24}}{7}\)
Câu b:
Do \(\cos a = - \frac{5}{{13}}\) và \(\frac{\pi }{2} < a < \pi \) nên
\(\sin a = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{{25}}{{169}}} = \frac{{12}}{{13}}\)
và \({\rm{tana = }}\frac{{\sin a}}{{\cos a}} = \frac{{12}}{{13}}.\left( { - \frac{5}{{13}}} \right) = \frac{{12}}{{13}}.\left( { - \frac{{13}}{5}} \right) = - \frac{{12}}{5}\)
Vậy ta có:
* \(\sin 2a = 2\sin a.c{\rm{osa = 2}}{\rm{.}}\frac{{12}}{{13}}.\left( { - \frac{5}{{13}}} \right) = - \frac{{120}}{{169}}\)
* \(\cos 2a = 1 - 2{\sin ^2}a = 1 - 2.{\left( {\frac{{12}}{{13}}} \right)^2} = 1 - \frac{{288}}{{169}} = - \frac{{119}}{{169}}\)
* \(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \left( { - \frac{{120}}{{169}}} \right):\left( {\frac{{119}}{{169}}} \right) = \frac{{120}}{{119}}\)
Câu c:
Do \(\sin a + \cos b = \frac{1}{2} \Rightarrow {(\sin a + \cos a)^2} = \frac{1}{4}\)
\( \Rightarrow {\sin ^2}a + \sin 2a + {\cos ^2}a = \frac{1}{4} \Rightarrow \sin 2a = \frac{1}{4} - 1 = - \frac{3}{4}\)
Từ \(\frac{{3\pi }}{4} < a < \pi \Rightarrow \frac{{3\pi }}{4} < 2a < 2\pi \)
\( \Rightarrow \cos 2a = \sqrt {1 - {{\sin }^2}2a} = \sqrt {1 - \frac{9}{{10}}} = \frac{{\sqrt 7 }}{4}\)
* \(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \left( { - \frac{3}{4}} \right):\left( { - \frac{{\sqrt 7 }}{4}} \right) = \frac{3}{{\sqrt 7 }}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247