Rút gọn các biểu thức
a) \(sin(a + b) + sin(\frac{\pi}{2}- a)sin(-b)\)
b) \(cos(\frac{\pi}{4} + a)cos(\frac{\pi }{4}- a) + sin^2a\)\(cos( \frac{\pi}{4}+ a)cos(\frac{\pi}{4} - a) + \frac{1}{2} sin^2a\)
c) \(cos(\frac{\pi}{2} - a)sin(\frac{\pi }{2} - b) - sin(a - b)\)\(cos(\frac{\pi}{2} - a)sin(\frac{\pi}{2} - b) - sin(a - b)\)
Câu a:
\(\sin (a + b) + \sin \left( {\frac{\pi }{2} - a} \right).\sin ( - b)\)
\( = \sin a.\cos b + \cos a.{\mathop{\rm sinb}\nolimits} + cosa.(sin - b)\)
\( = \sin a.\cos b + \cos a.sinb - cosa.sinb = sina.cosb\)
Câu b:
\(\cos \left( {\frac{\pi }{2} + a} \right).\cos \left( {\frac{\pi }{4} - a} \right) + \frac{1}{2}{\sin ^2}a\)
\( = \frac{1}{2}.\left[ {\cos \left( {\frac{\pi }{4} + a - \frac{\pi }{4} + a} \right) + \cos \left( {\frac{\pi }{4} + a + \frac{\pi }{4} - a} \right)} \right] + \frac{1}{2}.{\sin ^2}a\)
\( = \frac{1}{2}\cos 2a + \cos \frac{\pi }{2} + \frac{1}{2}.{\sin ^2}a = \frac{1}{2}(1 - 2{\sin ^2}a) + \frac{1}{2}{\sin ^2}a\)
\( = \frac{1}{2} - \frac{1}{2}{\sin ^2}a = \frac{{{{\cos }^2}a}}{2}\)
Câu c:
\(\begin{array}{l}\cos \left( {\frac{\pi }{2} - a} \right).\sin \left( {\frac{\pi }{2} - b} \right) - \sin (a - b)\\ = \sin a.\cos b - (\sin a.\cos b - \cos a.\sin b) = \cos a.\sin b\end{array}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247