Tính
a) \(cos(\alpha +\frac{\pi }{3})\), biết \(sin \alpha =\frac{1}{\sqrt{3}}\) và \(0 < \alpha < \frac{\pi}{2}\)
b) \(tan(\alpha -\frac{\pi }{4})\), biết \(cos\alpha = -\frac{1}{3}\) và \(\frac{\pi}{2} < \alpha < \pi\)
c) \(cos(a + b), sin(a - b),\) biết \(sina = \frac{4}{5}\), \(0^0 < a < 90^0\) và \(b=\frac{2}{3}, 90^0 < b < 180^0\)
Câu a:
Ta có \(\cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } = \sqrt {1 - \frac{1}{3}} \)
\( = \sqrt {\frac{2}{3}} \)(do \(0 < \alpha < \frac{\pi }{2}\) nên \(\cos \alpha > 0\) )
Vậy
\(\begin{array}{l}\cos \left( {\alpha + \frac{\pi }{3}} \right) = \cos \alpha .\cos \frac{\pi }{3} - \sin \alpha .sin\frac{\pi }{3}\\ = \sqrt {\frac{2}{3}} .\frac{1}{2} - \frac{1}{{\sqrt 3 }}.\frac{{\sqrt 3 }}{2} = \frac{1}{{\sqrt 6 }} - \frac{1}{2}\end{array}\)
Câu b:
Áp dụng \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\)
\( \Rightarrow {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} - 1 = \frac{1}{{\left( { - \frac{1}{3}} \right)}} - 1 = 9 - 1 = 8\)
\( \Rightarrow \tan \alpha = - 2\sqrt 2 \) (do \(\frac{\alpha }{2} < \alpha < \pi \) nên \(\tan \alpha < 0\))
\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}}\)
\( = \frac{{ - 2\sqrt 2 - 1}}{{1 - 2\sqrt 2 }} = \frac{{1 + 2\sqrt 2 }}{{2\sqrt 2 - 1}} = \frac{{{{(1 + 2\sqrt 2 )}^2}}}{7} = \frac{{9 + 4\sqrt 2 }}{7}\)
Câu c:
Do \({0^0} < a < {90^0} \Rightarrow c{\rm{osa = }}\sqrt {1 - {{\sin }^2}a} = \sqrt {1 - {{\left( {\frac{4}{5}} \right)}^2}} = \sqrt {1 - \frac{{16}}{{25}}} = \frac{3}{5}\)
Do \({90^0} < b < {180^0} \Rightarrow c{\rm{osb = }}\sqrt {1 - {{\sin }^2}b} = - \sqrt {1 - \frac{4}{9}} = \sqrt {\frac{5}{9}} = - \frac{{\sqrt 5 }}{3}\)
Vậy ta có:
\({\rm{cos(a + b) = }}\cos a.\cos b - \sin a.\sin b = \frac{3}{5}.\left( { - \frac{{\sqrt 5 }}{3}} \right) - \frac{4}{5}.\frac{2}{3} = - \frac{1}{{\sqrt 5 }} - \frac{8}{{15}}\)
\({\rm{sin(a - b) = }}\sin a.\cos b - c{\rm{os}}a.\sin b = \frac{4}{5}.\left( { - \frac{{\sqrt 5 }}{3}} \right) - \frac{3}{5}.\frac{2}{3} = \frac{4}{{3\sqrt 5 }} - \frac{2}{5}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247