Chứng minh rằng:
a) Nếu \(\alpha + \beta + \gamma = k\pi \left( {k \in Z} \right)\) và \(\cos \alpha \cos \beta \cos \gamma \ne 0\) thì \(\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \)
b) Nếu \(0 < \alpha < \beta < \gamma < \frac{\pi }{2}\) và \(\tan \alpha = \frac{1}{8};\tan \beta = \frac{1}{5};\tan \gamma = \frac{1}{2}\) thì \(\alpha + \beta + \gamma = \frac{\pi }{2}\)
c) \(\frac{1}{{\sin {{10}^0}}} - \frac{{\sqrt 3 }}{{\cos {{10}^0}}} = 4\)
a) Ta có:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\alpha + \beta + \gamma = k\pi \\
\Rightarrow \tan \left( {\alpha + \beta } \right) = \tan \left( {k\pi - \gamma } \right) = - \tan \gamma
\end{array}\\
{ \Rightarrow \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} = - \tan \gamma }\\
{ \Rightarrow \tan \alpha + \tan \beta = - \tan \gamma \left( {1 - \tan \alpha \tan \beta } \right)}\\
{ \Rightarrow \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma }
\end{array}\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\tan \left( {\alpha + \beta } \right) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}\\
= \frac{{\frac{1}{8} + \frac{1}{5}}}{{1 - \frac{1}{8}.\frac{1}{5}}} = \frac{1}{3}
\end{array}\\
\begin{array}{l}
\Rightarrow \tan \left( {\alpha + \beta + \gamma } \right)\\
= \frac{{\tan \left( {\alpha + \beta } \right) + \tan \gamma }}{{1 - \tan \left( {\alpha + \beta } \right)\tan \lambda }} = \frac{{\frac{1}{3} + \frac{1}{2}}}{{1 - \frac{1}{3}.\frac{1}{2}}} = 1
\end{array}
\end{array}\)
Vì \(0 < \alpha + \beta + \gamma < \frac{{3\pi }}{2}\) nên ta có \(\alpha + \beta + \gamma = \frac{\pi }{4}\)
c)
\(\begin{array}{l}
\frac{1}{{\sin {{10}^0}}} - \frac{{\sqrt 3 }}{{\cos {{10}^0}}} = \frac{{\cos {{10}^0} - \sqrt 3 \sin {{10}^0}}}{{\sin {{10}^0}\cos {{10}^0}}}\\
= \frac{{2\left( {\cos {{60}^0}\cos {{10}^0} - \sin {{60}^0}\sin {{10}^0}} \right)}}{{\sin {{10}^0}\cos {{10}^0}}}\\
= \frac{{2\cos \left( {{{60}^0} + {{10}^0}} \right)}}{{\frac{1}{2}\sin {{20}^0}}} = \frac{{4\cos {{70}^0}}}{{\cos {{70}^0}}} = 4
\end{array}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247