A. Các câu hỏi trong bài
Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ (400; 50) đến thành phố B có tọa độ (100; 450) (Hình 17) và thời gian bay quãng đường AB là 3 giờ. Người ta muốn biết vị trí (tọa độ) của máy bay trực thăng tại thời điểm sau khi xuất phát t giờ (0 ≤ t ≤ 3).
Làm thế nào để xác định được tọa độ của máy bay trực thăng tại thời điểm trên?
Trong mặt phẳng tọa độ Oxy (Hình 18), cho hai vectơ \(\overrightarrow u = \left( {{x_1};\,{y_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};\,\,{y_2}} \right)\).
Biểu diễn các vectơ \(\overrightarrow u ,\,\,\overrightarrow v \) theo hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).
Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).
Chứng minh ba điểm A, B, C không thẳng hàng.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2; 4); B(– 1; 1); C(– 8; 2).
Tính số đo góc ABC (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Chứng minh khẳng định sau:
Hai vectơ \(\overrightarrow u = \left( {{x_1};\,{y_1}} \right),\,\,\overrightarrow v = \left( {{x_2};\,{y_2}} \right)\,\,\left( {\overrightarrow v \ne \overrightarrow 0 } \right)\) cùng phương khi và chỉ khi có một số thực k sao cho x1 = kx2 và y1 = ky2.
Một vật đồng thời bị ba lực tác động: lực tác động thứ nhất \(\overrightarrow {{F_1}} \) có độ lớn là 1 500 N, lực tác động thứ hai \(\overrightarrow {{F_2}} \) có độ lớn là 600 N, lực tác động thứ ba \(\overrightarrow {{F_3}} \) có độ lớn là 800 N. Các lực này được biểu diễn bằng những vectơ như Hình 23, với \(\left( {\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} } \right) = 30^\circ ,\,\left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_3}} } \right) = 45^\circ \)và \(\left( {\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} } \right) = 75^\circ \). Tính độ lớn lực tổng hợp tác động lên vật (làm tròn kết quả đến hàng đơn vị).
Biểu diễn các vectơ \(\overrightarrow u + \overrightarrow v ,\,\,\overrightarrow u - \overrightarrow v \), \(k\overrightarrow u \) (k ∈ ℝ) theo hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).
Tìm tọa độ các vectơ \(\overrightarrow u + \overrightarrow v ,\,\,\overrightarrow u - \overrightarrow v \), \(k\overrightarrow u \) (k ∈ ℝ).
Tìm tọa độ trọng tâm G của tam giác ABC.
Giải tam giác ABC (làm tròn các kết quả đến hàng đơn vị).
Tính chu vi của tam giác ABC.
Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247