A. \(\mathop \smallint \nolimits_{}^{} \frac{{dx}}{x} = \ln \;x\; + \,C\)
B. \(\mathop \smallint \nolimits_{}^{} {x^\alpha }dx = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\; + \,C\left( {\alpha \ne - 1} \right)\)
C. \(\mathop \smallint \nolimits_{}^{} {\alpha ^x}dx = \frac{{{\alpha ^x}}}{{\ln \;\alpha }}\; + \,C\left( {0 < \alpha \ne - 1} \right)\)
D. \(\mathop \smallint \nolimits_{}^{} \frac{1}{{{{\cos }^2}x}}dx = \tan \;x + C\)
A. \(\tan x-\cot x+C\)
B. \(\cot 2 x+C\)
C. \(\tan 2 x-x+C\)
D. \(-\tan x+\cot x+C\)
A. \(f(x)=-\sin x+7 \cos x\)
B. \(f(x)=\sin x+7 \cos x\)
C. \(f(x)=\sin x-7 \cos x\)
D. \(f(x)=-\sin x-7 \cos x\)
A. \(\ln \;x - \ln \;{x^2} + C\)
B. \(\ln \;x - \frac{1}{x} + C\)
C. \(\ln \;x + \frac{1}{x} + C\)
D. \(\ln \;\left| x \right| + \frac{1}{x} + C\)
A. \(F(x)=\tan x-x+C\)
B. \(F(x)=-\tan x+x+C\)
C. \(F(x)=\tan x+x+C\)
D. \(F(x)=-\tan x-x+C\)
A. \(\frac{2}{3} \int_{1}^{3} u^{2} d u\)
B. \(\frac{2}{3} \int_{0}^{2} u^{2} d u\)
C. \(\left.\frac{2}{9} u^{3}\right|_{1} ^{2}\)
D. \(\int_{1}^{3} u^{2} d u\)
A. 11
B. 9
C. 7
D. 12,5
A. \(\ln 3-\frac{3}{5}\)
B. \(\ln 2-2\)
C. \(\ln 2-\frac{3}{4}\)
D. \(\ln 2-\frac{3}{8}\)
A. \(4 \sqrt{2}\)
B. \(3 \sqrt{2}\)
C. \( \sqrt{2}\)
D. \(- \sqrt{2}\)
A. \(\frac{-5 \pi}{8}\)
B. \(\frac{\pi}{2}\)
C. \(\frac{3 \pi}{8}\)
D. \(\frac{\pi}{8}\)
A. \(-\left.\left(x^{2}-5 x\right) \ln x\right|_{1} ^{e}-\int_{1}^{e}(x-5) d x\)
B. \(\left.\left(x^{2}-5 x\right) \ln x\right|_{1} ^{e}+\int_{1}^{e}(x-5) d x\)
C. \(\left.(x-5) \ln x\right|_{1} ^{e}-\int_{1}^{e}\left(x^{2}-5 x\right) d x\)
D. \(\left.\left(x^{2}-5 x\right) \ln x\right|_{1} ^{e}-\int_{1}^{e}(x-5) d x\)
A. 7
B. 5
C. 2
D. \(\frac{5}{2}\)
A. 5
B. -6
C. 9
D. -9
A. \( {S_H} = \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|{\rm{d}}x - \mathop \smallint \limits_a^b \left| {g\left( x \right)} \right|{\rm{d}}x.\)
B. \( {S_H} = \mathop \smallint \limits_a^b \left| {f\left( x \right) - g\left( x \right)} \right|{\rm{d}}x.\)
C. \( {S_H} = \left| {\mathop \smallint \limits_a^b \left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} \right|.\)
D. \( {S_H} = \mathop \smallint \limits_a^b \left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x.\)
A. \( S = \mathop \smallint \limits_a^b \left( {f\left( x \right) - g\left( x \right)} \right)dx\)
B. \( S = \mathop \smallint \limits_a^b \left( {g\left( x \right) - f\left( x \right)} \right)dx\)
C. \( S = \mathop \smallint \limits_a^b \left| {f\left( x \right) - g\left( x \right)} \right|dx\)
D. \( S = \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|dx - \mathop \smallint \limits_a^b \left| {g\left( x \right)} \right|dx\)
A. \( S = \mathop \smallint \limits_{ - 2}^{ - 3} 2xdx\)
B. \(S = \pi \mathop \smallint \limits_{ - 3}^{ - 2} 4{x^2}dx\)
C. \( S = \mathop \smallint \limits_{ - 3}^{ - 2} 2xdx\)
D. \( S = \mathop \smallint \limits_{ - 3}^{ - 2} (2x)^2dx\)
A. \( S = \mathop \smallint \limits_1^3 f\left( x \right)dx.\)
B. \( S = \mathop \smallint \limits_1^3 \left| {f\left( x \right)} \right|dx\)
C. \( S = \mathop \smallint \limits_3^1 f\left( x \right)dx.\)
D. \( S = \mathop \smallint \limits_3^1 \left| {f\left( x \right)} \right|dx.\)
A. \( S = \mathop \smallint \limits_{ - 3}^{ - 1} \left| {{x^2} - 1} \right|dx\)
B. \( S = \mathop \smallint \limits_{ - 1}^{ - 3} \left| {{x^2} - 1} \right|dx\)
C. \( S = \mathop \smallint \limits_{ - 3}^{ 0} \left| {{x^2} - 1} \right|dx\)
D. \( S = \mathop \smallint \limits_{ - 3}^{ - 1} \left( {1 - {x^2}} \right)dx\)
A. A′(3;−2;1).
B. A′(3;2;−1).
C. A′(3;−2;−1).
D. A′(3;2;1)
A. \( M\left( {\frac{{ - {x_A} + {x_B}}}{2};\frac{{ - {y_A} + {y_B}}}{2};\frac{{ - {z_A} + {z_B}}}{2}} \right)\)
B. \( M\left( {\frac{{{x_A} + {x_B}}}{3};\frac{{{y_A} + {y_B}}}{3};\frac{{{z_A} + {z_B}}}{3}} \right)\)
C. \(M\left( {\frac{{{x_A} - {x_B}}}{2};\frac{{{y_A} - {y_B}}}{2};\frac{{{z_A} - {z_B}}}{2}} \right)\)
D. \( M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\)
A. M∈(Oxz).
B. M∈(Oyz).
C. M∈Oy.
D. M∈(Oxy).
A. K(0;2;3).
B. H(1;2;0).
C. F(0;2;0).
D. E(1;0;3).
A. Mặt phẳng (Oxy).
B. Trục Oy.
C. Mặt phẳng (Oyz).
D. Mặt phẳng (Oxz).
A. H(3 ; 0 ; 2)
B. H(-3 ; 0 ; -2)
C. H(-1 ; 4 ; 4)
D. H(-1 ; -1 ; 0)
A. (0 ;-3 ; 5)
B. (1 ;-3 ; 0)
C. (0 ;-3 ; 0)
D. (0 ;-3 ; -5)
A. (-2 ; 2 ; 0)
B. (-2 ; 0 ; 2)
C. (-1 ; 1 ; 0)
D. (-1 ; 0 ; 1)
A. \(H(6 ; 7 ; 8)\)
B. \(H(1 ; 2 ; 2)\)
C. \(H(2 ; 5 ; 3)\)
D. \(H(2 ;-3 ;-1)\)
A. (1 ; 1 ; 3)
B. (5 ; 2 ; 2)
C. (0 ; 0 ;-3)
D. (3 ; 0 ; 3)
A. \((x-1)^{2}+y^{2}+(z+2)^{2}+25=0\)
B. \((x+1)^{2}+y^{2}+(z-2)^{2}=25\)
C. \((x-1)^{2}+y^{2}+(z-2)^{2}=25\)
D. \((x-1)^{2}+y^{2}+(z+2)^{2}=25\)
A. \((x-1)^{2}+(y-2)^{2}+(z+3)^{2}=14\)
B. \((x+1)^{2}+(y+2)^{2}+(z-3)^{2}=53\)
C. \((x-1)^{2}+(y-2)^{2}+(z+3)^{2}=17\)
D. \((x-1)^{2}+(y-2)^{2}+(z+3)^{2}=53\)
A. \((x+1)^{2}+(y+1)^{2}+(z+1)^{2}=62\)
B. \((x+5)^{2}+(y+1)^{2}+(z-6)^{2}=62\)
C. \((x-1)^{2}+(y-1)^{2}+(z-1)^{2}=62\)
D. \((x-5)^{2}+(y-1)^{2}+(z+6)^{2}=62\)
A. \((S):(x-1)^{2}+y^{2}+(z+3)^{2}=9\)
B. \((S):(x+1)^{2}+y^{2}+(z-3)^{2}=3\)
C. \((S):(x-1)^{2}+y^{2}+(z+3)^{2}=3\)
D. \((S):(x+1)^{2}+y^{2}+(z-3)^{2}=9\)
A. \((x-1)^{2}+y^{2}+(z+2)^{2}=4\)
B. \((x+1)^{2}+y^{2}+(z-2)^{2}=16\)
C. \((x+1)^{2}+y^{2}+(z-2)^{2}=4\)
D. \((x-1)^{2}+y^{2}+(z+2)^{2}=16\)
A. \(3\over2\)
B. 3
C. \(\sqrt5\over2\)
D. 2
A. \(9\over7\)
B. \(9\over7\sqrt2\)
C. \(9\over14\)
D. \(9\over\sqrt2\)
A. \(\sqrt {\frac{19}{86}}\)
B. \(\sqrt {\frac{86}{19}}\)
C. 11
D. \(\sqrt {\frac{19}{2}}\)
A. 1
B. 2
C. 2 hoặc 32
D. 32
A. \(1\over9\)
B. \(1\over3\)
C. \(1\over6\)
D. \(1\over2\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247