Trang chủ Đề thi & kiểm tra Lớp 11 Toán học Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT Phạm Phú Thứ

Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT Phạm Phú Thứ

Câu 1 : Tam giác ABC có ba góc \(\hat A,\hat B,\hat C\)  theo thứ tự đó lập thành cấp số cộng và \(\hat C= 5\hat A\) . Xác định số đo các góc \(\hat A,\hat B,\hat C\)

A. \(\begin{aligned} &\left\{\begin{array}{l} \hat A=10^{\circ} \\ \hat B=120^{\circ} \\ \hat C=50^{\circ} \end{array}\right. \end{aligned}\)

B. \(\left\{\begin{array}{l} \hat A=15^{\circ} \\ \hat B=105^{\circ} \\ \hat C=60^{\circ} \end{array}\right.\)

C. \(\begin{aligned} &\left\{\begin{array}{l} \hat A=5^{0} \\ \hat B=60^{\circ} \\ \hat C=25^{\circ} \end{array}\right. \end{aligned}\)

D. \(\left\{\begin{array}{l} \hat A=20^{\circ} \\ \hat B=60^{\circ} \\ \hat C=100^{\circ} \end{array}\right.\)

Câu 3 : Cho cấp số cộng \((u_n)\) thỏa mãn \(\left\{\begin{array}{l} u_{7}-u_{3}=8 \\ u_{2} \cdot u_{7}=75 \end{array}\right.\). Tìm \(u_{1}, d\)?

A. \(\left\{\begin{array}{l}d=2 \\ u_{1}=2, u_{1}=-17\end{array}\right.\)

B. \(\left\{\begin{array}{l}d=2 \\ u_{1}=3, u_{1}=-7\end{array}\right.\)

C. \(\left\{\begin{array}{l}d=2 \\ u_{1}=-3, u_{1}=-17\end{array}\right.\)

D. \(\left\{\begin{array}{l}d=2 \\ u_{1}=3, u_{1}=-17\end{array}\right.\)

Câu 6 : Cho cấp số nhân \({u_1} = - 1\), \({u_6} = 0,00001\). Khi đó q và số hạng tổng quát là

A. \(q = \frac{1}{{10}},{u_n} = \frac{{ - 1}}{{{{10}^{n - 1}}}}\)

B. \(q = \frac{{ - 1}}{{10}},{u_n} = - {10^{n - 1}}\)

C. \(q = \frac{{ - 1}}{{10}},{u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{{10}^{n - 1}}}}\)

D. \(q = \frac{1}{{10}},{u_n} = \frac{1}{{{{10}^{n - 1}}}}\)

Câu 10 : Cho cấp số nhân (un) có số hạng đầu u1 = -3 và công bội \(q = \frac{2}{3}\). Số hạng thứ năm của (un) là

A. \(\frac{{27}}{{16}}\)

B. \(\frac{{16}}{{27}}\)

C. \( - \frac{{27}}{{16}}\)

D. \( - \frac{{16}}{{27}}\)

Câu 15 : Cho dãy số \(\left(u_{n}\right) \text { với } u_{n}=\sqrt{2}+(\sqrt{2})^{2}+\ldots+(\sqrt{2})^{n}\) Mệnh đề nào sau đây đúng ? 

A. \(\lim u_{n}=-\infty\)

B. \(\lim u_{n}=\frac{\sqrt{2}}{1-\sqrt{2}}\)

C. \(\lim u_{n}=+\infty\)

D. \(\text{Không tồn tại }\lim u_{n}\)

Câu 16 : Tìm giới hạn \(D=\lim\limits _{x \rightarrow 0} \frac{\sqrt[3]{x+1}-1}{\sqrt{2 x+1}-1}\)

A. \(+\infty\)

B. \(\frac{1}{3}\)

C. 0

D. \(-\infty\)

Câu 17 : Tìm giới hạn \(C=\lim\limits _{x \rightarrow 3} \frac{\sqrt{2 x+3}-3}{x^{2}-4 x+3}\)

A. \(+\infty\)

B. \(-\infty\)

C. \(\frac{1}{6}\)

D. 1

Câu 18 : Tìm giới hạn \(B=\lim \limits_{x \rightarrow 1} \frac{x^{4}-3 x^{2}+2}{x^{3}+2 x-3}\)

A. \(+\infty\)

B. \(-\frac{2}{5}\)

C. 0

D. \(-\infty\)

Câu 19 : Tìm giới hạn \(A=\lim\limits _{x \rightarrow 2} \frac{2 x^{2}-5 x+2}{x^{3}-8}\)

A. \(+\infty\)

B. \(-\infty\)

C. \(\frac{1}{4}\)

D. 0

Câu 22 : Cho hàm số \(f(x)=\left\{\begin{array}{l} 3 x+2 \text { khi } x<-1 \\ x^{2}-1 \text { khi } x \geq-1 \end{array}\right.\). Chọn khẳng định đúng trong các khẳng định sau. 

A. f(x) liên tục trên \(\begin{aligned} &\mathbb{R} \end{aligned}\)

B. f(x) liên tục trên \((-\infty ;-1]\)

C. f(x) liên tục trên \([-1 ;+\infty)\)

D. f(x) liên tục tại x=1

Câu 23 : Cho hàm số \(\begin{equation} f(x)=\frac{x-2}{x^{2}-3 x+2} \end{equation}\) . Hàm số liên tục trên 

A. \((-\infty ; 1) \text { và }(1 ;+\infty)\)

B. R

C. \(\begin{array}{l} (-\infty ; 2) \text { và }(2 ;+\infty) \end{array}\)

D. \((-\infty ; 1),(1 ; 2) \text { và }(2 ;+\infty)\)

Câu 24 : Cho hàm số \(\begin{equation} f(x)=\frac{x^{2}+1}{x^{2}+5 x+6} \end{equation}\). Hàm số f (x) liên tục trên khoảng nào sau đây? 

A. \(\begin{equation} \begin{aligned} &(-\infty ; 3) . \end{aligned} \end{equation}\)

B. (2;3)

C. (-3;2)

D. \((-3 ;+\infty) \)

Câu 28 : Cho tứ diện ABCD có \(A B=a, B D=3 a\) . Gọi M, N lần lượt là trung điểm của AD và BC . Biết AC vuông góc với BD . Tính MN 

A. \(M N=\frac{a \sqrt{6}}{3}\)

B. \(M N=\frac{a \sqrt{10}}{2}\)

C. \(M N=\frac{2 a \sqrt{3}}{3}\)

D. \(M N=\frac{3 a \sqrt{2}}{2}\)

Câu 31 : Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai? 

A. \(A^{\prime} C^{\prime} \perp B D\)

B. \(B B^{\prime} \perp B D\)

C. \(A^{\prime} B \perp D C^{\prime}\)

D. \(B C^{\prime} \perp A^{\prime} D\)

Câu 32 : Cho tứ diện ABCD . Gọi M N , lần lượt là trung điểm các cạnh BC và AD . Cho biết \(A B=C D=2 a \text { và } M N=a \sqrt{3}\). Tính góc giữa hai đường thẳng AB và CD?

A. \((\widehat{A B, C D})=30^{0}\)

B. \((\widehat{A B, C D})=45^{0}\)

C. \(\widehat{(A B, C D)}=60^{\circ}\)

D. \(\widehat{(A B, C D)}=90^{\circ}\)

Câu 33 : Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu H của S trên ( ABC) là: 

A. Tâm đường tròn nội tiếp tam giác ABC. 

B. Tâm đường tròn ngoại tiếp tam giác ABC.

C. Trọng tâm tam giác ABC.

D. Giao điểm hai đường thẳng AC và BD.

Câu 34 : Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau:

A. Chân đường cao của hình chóp đều trùng với tâm của đa giác đáy đó.

B. Tất cả những cạnh của hình chóp đều bằng nhau.

C. Đáy của hình chóp đều là miền đa giác đều.

D. Các mặt bên của hình chóp đều là những tam giác cân

Câu 36 : Cho tứ diện ABCD có \(A B=A C \text { và } D B=D C\) . Khẳng định nào sau đây đúng? 

A. \(A B \perp(A B C)\)

B. \(A C \perp B D\)

C. \(C D \perp(A B D)\)

D. \(B C \perp A D\)

Câu 37 : Hình hộp ABCD.A'B'C'D' là hình hộp gì nếu tứ diện AA'B'D' có các cạnh đối vuông góc.

A. Hình lập phương.

B. Hình hộp tam giác.

C. Hình hộp thoi.

D. Hình hộp tứ giác.

Câu 38 : Trong các mệnh đề sau, mệnh đề nào đúng?

A. Nếu hình hộp có hai mặt là hình chữ nhật thì nó là hình hộp chữ nhật.

B. Nếu hình hộp có năm mặt là hình chữ nhật thì nó là hình hộp chữ nhật.

C. Nếu hình hộp có bốn mặt là hình chữ nhật thì nó là hình hộp chữ nhật.

D. Nếu hình hộp có ba mặt là hình chữ nhật thì nó là hình hộp chữ nhật.

Câu 39 : Trong lăng trụ đều, khẳng định nào sau đây sai?

A. Đáy là đa giác đều.

B. Các mặt bên là những hình chữ nhật nằm trong mặt phẳng vuông góc với đáy.

C. Các cạnh bên là những đường cao.

D. Các mặt bên là những hình bình hành.

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Copyright © 2021 HOCTAP247