Bài tập 30 trang 59 SGK Toán 10 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 30 trang 59 SGK Toán 10 NC

Viết mỗi hàm số sau đây thành dạng \(y=a(x−p)^2+q\) từ đó hãy cho biết đồ thị của nó có thể suy ra từ đồ thị hàm số nào nhờ các phép tịnh tiến đồ thị song song với các trục tọa độ và mô tả cụ thể các phép tịnh tiến.
a) \(y=x^2-8x+12\)

b) \(y=-3x^2-12x+9\)

a) Ta có \(y = {x^2} - 8x + 16 - 4 = {\left( {x - 4} \right)^2} - 4\)

Đồ thị hàm số \(y=(x−4)^2−4\) có được nhờ tịnh tiến liên tiếp đồ thị hàm số y = x2 về phải 4 đơn vị, rồi xuống dưới 4 đơn vị.

b) Ta có \(y =  - 3\left( {{x^2} + 4x + 4} \right) + 21 \Leftrightarrow y =  - 3{\left( {x + 2} \right)^2} + 21\)

Đồ thị hàm số \(y=−3(x+2)^2+21\) có được nhờ tịnh tiến liên tiếp đồ thị hàm số y = −3xsang trái 2 đơn vị, rồi lên trên 21 đơn vị.

 

-- Mod Toán 10

Copyright © 2021 HOCTAP247