Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Hoàng Văn Thụ

Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Hoàng Văn Thụ

Câu 2 : Nếu F(x) là một nguyên hàm của hàm số \(f(x)=\frac{1}{x-1}\) và \(F(2)=1\) thì \(F(3)\) bằng

A. \(\ln 2+1\)

B. \(\ln \frac{3}{2}\)

C. \(\ln 2\)

D. \(\frac{1}{2}\)

Câu 4 : Tính \(\int \tan x d x\)

A. \(\ln |\cos x|+C\)

B. \(-\ln |\cos x|+C\)

C. \(\frac{1}{\cos ^{2} x}+C\)

D. \(\frac{-1}{\cos ^{2} x}+C\)

Câu 5 : Kết quả \(\int e^{\sin x} \cos x d x\) bằng

A. \(\cos x \cdot e^{\sin x}+C\)

B. \(e^{\cos x}+C\)

C. \(e^{\sin x}+C\)

D. \(e^{-\sin x}+C\)

Câu 6 : Tích phân \(\int_{0}^{\pi} x \cos \left(x+\frac{\pi}{4}\right) d x\) có giá trị bằng

A. \(\frac{(\pi-2) \sqrt{2}}{2}\)

B. \(-\frac{(\pi-2) \sqrt{2}}{2}\)

C. \(\frac{(\pi+2) \sqrt{2}}{2}\)

D. \(-\frac{(\pi+2) \sqrt{2}}{2}\)

Câu 7 : Xét tích phân \(I=\int_{0}^{\pi / 3} \frac{\sin 2 x}{1+\cos x} d x\) . Thực hiện phép đổi biến \(t=\cos x\), ta có thể đưa I về dạng nào sau đây?

A. \(I=-\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)

B. \(I=\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)

C. \(I=-\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)

D. \(I=\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)

Câu 14 : Diện tích hình phẳng giới hạn bởi các đường \(y = x^2 - x , y = 2x - 2 , x = 0 , x = 3\) được tính bởi công thức:

A. \( S = \left| {\mathop \smallint \limits_0^3 \left( {{x^2} - 3x + 2} \right)dx} \right|\)

B. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} - 3x + 2} \right|dx\)

C. \( S = \mathop \smallint \limits_0^3 \left| {{x^2} - 3x + 2} \right|dx\)

D. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} + x - 2} \right|dx\)

Câu 15 : Điểm N  là hình chiếu của M(x;y;z) trên trục tọa độ Oz thì:

A. N(x;y;z)

B. N(x;y;0)

C. N(0;0;z)

D. N(0;0;1)

Câu 25 : Trong không gian Oxyz , cho điểm A(1;2;-1) và mặt phẳng \((P): x-y+2 z-3=0\) . Đường thẳng d đi qua A và vuông góc với mặt phẳng (P) có phương trình là

A. \(d: \frac{x-1}{1}=\frac{2-y}{1}=\frac{z+1}{2}\)

B. \(d: \frac{x+1}{1}=\frac{y+2}{-1}=\frac{z-1}{2}\)

C. \(d: \frac{x-1}{1}=\frac{y-2}{1}=\frac{z+1}{2}\)

D. \(d: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}\)

Câu 26 : Trong hệ tọa độ Oxyz , cho hình hộp ABCD.MNPQ  tâm I , biết A(0;1;2) , B(1;0;1), C(2;0;1) , và Q( -1;0;1). Đường thẳng d qua I , song song với AC có phương trình là

A. \(\left\{\begin{array}{l}x=2 t \\ y=-t \\ z=-1-t\end{array}\right.\)

B. \(\left\{\begin{array}{l}x=4 t \\ y=-2 t \\ z=-1-2 t\end{array}\right.\)

C. \(\left\{\begin{array}{l}x=2 t \\ y=-t \\ z=1+t\end{array}\right.\)

D. \(\left\{\begin{array}{l}x=4 t \\ y=-2 t \\ z=1-2 t\end{array}\right.\)

Câu 27 : Trong không gian với hệ tọa độ Oxyz , cho điểm A(2;-1;3) và mặt phẳng \((P): 2 x-3 y+z-1=0\) . Viết phương trình đường thẳng d đi qua A và vuông góc với (P)

A. \(d: \frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-3}{3}\)

B. \(d: \frac{x+2}{2}=\frac{y-1}{-3}=\frac{z+3}{1}\)

C. \(d: \frac{x-2}{2}=\frac{y+3}{-1}=\frac{z-1}{3}\)

D. \(d: \frac{x-2}{2}=\frac{y+1}{-3}=\frac{z-3}{1}\)

Câu 28 : Trong không gian với hệ tọa độ Oxyz , viết phương trình tham số của đường thẳng qua A(1;2;-2) và vuông góc với mặt phẳng \((P): x-2 y+3=0\)

A. \(\left\{\begin{array}{l}x=1+t \\ y=2-2 t \\ z=-2+3 t\end{array}\right.\)

B. \(\left\{\begin{array}{l}x=-1+t \\ y=-2-2 t \\ z=2+3 t\end{array}\right.\)

C. \(\left\{\begin{array}{l}x=1+t \\ y=2-2 t \\ z=-2\end{array}\right.\)

D. \(\left\{\begin{array}{l}x=-1+t \\ y=-2-2 t \\ z=2\end{array}\right.\)

Câu 29 : Viết phương trình tham số của đường thẳng d qua I (-1;5;2) và song song với trục Ox.

A. \(\begin{array}{l} \left\{\begin{array}{l} x=-2 t \\ y=10 t ; t \in \mathbb{R} \\ z=4 t \end{array}\right. \end{array}\)

B. \(\left\{\begin{array}{l} x=t-1 \\ y=5 \quad ; t \in \mathbb{R} \\ z=2 \end{array}\right.\) và \(\left\{\begin{array}{l} x=-2 t \\ y=10 t ; t \in \mathbb{R} \\ z=4 t \end{array}\right.\)

C. \(\left\{\begin{array}{l} x=t-1 \\ y=5 \quad ; t \in \mathbb{R} \\ z=2 \end{array}\right.\)

D. \(\left\{\begin{array}{l} x=-m \\ y=5 m ; m \in \mathbb{R} \\ z=2 m \end{array}\right.\)

Câu 30 : Trong không gian tọa độ Oxyz, lập phương trình mặt cầu tâm \(I\left( 2;3;-1 \right)\) cắt đường thẳng \(d:\left\{ \begin{array} {} x=1+2t \\ {} y=-5+t \\ {} z=-15-2t \\ \end{array} \right.\) tại A, B với AB = 16.

A. \({{\left( x-2 \right)}^{2}}+{{\left( y-3 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=289\)

B. \({{\left( x-2 \right)}^{2}}+{{\left( y-3 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=298\)

C. \({{\left( x-2 \right)}^{2}}+{{\left( y+3 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=289\)

D. \({{\left( x-2 \right)}^{2}}+{{\left( y-3 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=289\)

Câu 31 : Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\text{ }\!\!\Delta\!\!\text{ }:\frac{x}{1}=\frac{y+3}{1}=\frac{z}{2}\). Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt{2}\) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I.

A. \(I\left( 1;-2;2 \right);\text{ }I\left( 5;2;10 \right)\)

B. \(I\left( 1;-2;2 \right);\text{ }I\left( 0;-3;0 \right)\)

C. \(I\left( 5;2;10 \right);\text{ }I\left( 0;-3;0 \right)\)

D. \(I\left( 1;-2;2 \right);\text{ }I\left( -1;2;-2 \right)\)

Câu 37 : Cho tứ diện ABCD biết \(A(0;-1;3);B(2;1;0),C(-1;3;3);D(1;-1;-1)\). Tính chiều cao AH của tứ diện.

A. \(\sqrt{29}\over2\)

B. \(1\over\sqrt{29}\)

C. \(\sqrt{29}\)

D. \(14\over\sqrt{29}\)

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Copyright © 2021 HOCTAP247